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Abstract
-")jDefect properties of copper are calculated using molecular

* statics with an interatomic potential recently derived from first
principles. Tri- and tetravacancies are found to be very mobile
with migration energies of 0.56 and 0.39 eV, respectively,
compared to previously calculated single and divacancy migration
energies of 0.82 and 0.55 eV, respectively. Using the binding
and migration energies calculated with the interatomic potential,
annealing kinetics in copper and modeled using rate equations.
The effective activation energy of annealing in the model is
within 0.02 eV of single vacancy migration energy over a wide
range of sink and initial single vacancy concentrations, which
conforms to experimental results. In two cases, however, the
larger clusters affect the activation energy and no definitive
conclusions about whether or not the calculated cluster migration
energies are correct for copper can be made.

The stability and structure of larger vacancy clusters with
ten to forty vacancies were also investigated using the first
principles copper potential. The stacking fault energy was first
calculated and, for the pote tial cutoff radius usf-i in the
defect calculations, yielde of a value of 65 mJ/m' compared to
the experimental value of 70 mJ/m2 . To investigate the large
clusters, vacancy platel s of various sizes were created in a
close-packed plane and he system was relaxed to the minimum
energy configuration. mall vacancy platelets with as few as ten
vacancies collapsed into stacking fault tetrahedra and faulted
loops, depending on the shape of the platelet. Stacking fault
tetrahedra are found to be the most stable large clusters.
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Abstract

Defect properties of copper are calculated using
molecular statics with an interatomic potential recently
derived from first principles. Tri- and tetravacancies
are found to be very mobile with migration energies of
0.56 and 0.39 ev, respectively, compared to previously
calculated single and divacancy migration energies of
0.82 and 0.55 ev, respectively. Using the binding and
migration energies calculated with the interatomic
potential, annealing kinetics in copper are modeled using
rate equations. The effective activation energy of
annealing in the model is within 0.02 eV of single
vacancy migration energy over a wide range of sink and
initial single vacancy concentrations, which conforms to
experimental results. In two cases, however, the larger
clusters affect the activation energy and no definitive
conclusions about whether or not the calculated cluster
migration energies are correct for copper can be made.

The stability and structure of larger vacancy clusters
with ten to forty vacancies were also investigated using
the first principles copper potential. The stacking
fault energy was first calculated and, for the potential
cutoff radius used in the defect calculations, yielded of
a value of 65 mJ/m2 compared to the experimental value of
-70 J/m. To investigate the large clusters, vacancy
platelets of various sizes were created in a close-packed
plane and the system was relaxed to the minimum energy
configuration. Small vacancy platelets with as few as
ten vacancies collapsed into stacking fault tetrahedra
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and faulted loops, depending on the shape of the
platelet. Stacking fault tetrahedra are found to be the
most stable large clusters.

In order to investigate the range applicability of the
potential, molecular dynamics calculations of
thermodynamics and vibrational properties were performed.
Parallel calculations were also done using an empirical
potential. It was found that the agreement between
calculated and experimental properties was much better at
low temperatures than at temperatures near melting for
both potentials. Neither potential was found to be
significantly better than the other for thermodynamic
calculations.

A first principles potential for silver was also used
to calculate defect migration and thermodynamic
properties. The divacancy is found to be the most mobile
vacancy cluster, followed by tetra-, tri-, and single
vacancies. Combined with the copper results, it is
concluded that di-, tri- and tetravacancies are all
highly mobile compared to single vacancy, and the
relative order among the clusters depends on the
potential. As with the copper potentials, the
thermodynamic properties calculated using the silver
potential were in good agreement with experimental
results at low temperatures, but discrepancies were found
at high temperatures.

Thesis Supervisor: Sidney Yip
Title: Professor of Nuclear Engineering

Thesis Reader: Ronald G. Ballinger
Title: Assistant Professor of NuclearEngineering
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Chapter 1

Introduction

The technological importance of vacancies and small

vacancy clusters in materials has led to a considerable

research effort toward studying their effects. For many

reasons this has not been an easy task. The primary

difficulty is the small size of these defects which is on

the order of a few lattice constants. This makes it

difficult to identify and distinguish from among vacancies

and small vacancy clusters and has often forced

experimentalists to use macroscopic properties to quantify

defect concentrations. For example, single vacancy

migration energies have been estimated for most metals

using annealing experiments in which the electrical

resistivity is used as a measure of vacancy concentration.
4

As Balluffi summarizes, this method has many drawbacks,

and the single vacancy migration energies of some metals

have only recently been reliably determined after twenty

years of experiments.

In the case of copper, there is very little

experimental information about small vacancy clusters.

Although the experimental values of single vacancy

formation and migration energy are fairly well

. ; : * ~ -... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
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4
established , the binding and migration energies of larger

clusters are unknown. Annealing studies done by Wienhold
5

et al have suggested that at least one vacancy cluster is

as mobile as the single vacancy in copper. This is

confirmed by perturbed angular correlation (PAC) studies
6

of annealing in copper done by Wichert et al and Deicher
7

et al in which there appears to be a second mobile

vacancy-type defect in addition to the single vacancy.

Neither of these methods has been able to specifically

identify the size of the cluster, although it is assumed

to be a divacancy since theoretically divacancies are
4

believed to be more mobile than single vacancies

Defects involving larger vacancy clusters,

dislocation loops and stacking fault tetrahedra (SFT), can
8

be identified using electron microscopy and the size

distributions of loops can be determined using diffuse
9 9

X-ray scattering . Recently Larson and Young analyzed

the size distribution of dislocation loops in copper using

diffuse X-ray scattering and found loops which were

apparently as small as about 10-15A in radius. This

conflicted with earlier electron microscopy studies which
10

found loops as small as about 25A . Larson pointed out

that diffuse X-ray scattering should be better for

analyzing small loops, although it does not allow one to

image defects but only produces a size distribution. The

.', . -!
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diffuse X-ray scattering data in copper is interpreted
9, 11

using anisotropic elasticity theory . Although these

results are no doubt more reliable than the previous

studies using isotropic theory, it is well-known that the

assumptions behind elasticity theory break down near
12

dislocation cores

With these uncertainties in basic defect properties

of copper, it is evident that computational and

theoretical methods could contribute important information

to the current understanding. The purpose of this work is

to resolve some of these questions about the properties of

small vacancy defects in copper using the computational

methods of molecular statics (MS) and molecular dynamics

(MD). In these methods the material is represented by a

collection of atoms which interact with one another

through a given interatomic potential. This work is a

particularly timely application of MS and MD, since an

interatomic potential recently derived by Dagens using the
13, 14, 15

pseudopotential method is employed
16

The pseudopotential method is used to derive

potentials from first principles and with a minimum amount

of experimental information. Even with this

justification, however, the potential must be able to

duplicate existing experimental results to be considered

reliable. The quantities so far calculated using the

potential derived by Dagens, which include the most stable
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15 15
lattice type , the elastic constants , phonon

17 1
frequencies , and the properties of single vacancies

all agree well with experimental values for copper. In

this work the verification of the potential is further

extended by the calculation of basic thermodynamic

properties and vibrational properties. The bulk modulus

and phonon frequencies are also calculated to insure that

the computer implementation is correct since these can be

compared with previous calculations. It should be pointed

out that these results are for nonzero temperatures using

molecular dynamics while the previous calculations where

done using techniques at zero or low temperatures.

The defect calculations in this work for the most

part follow standard methods in this area. The first

attempt to calculate the displacement field around a

single vacancy was made by Girifalco and Streetman in
18

1958 . This work applies to BCC metals; in 1960

Girifalco and Weizer made a more complete study of vacancy
19

relaxation in cubic metals using a Morse potential

Tewordt used two Born-Mayer potentials to calculate
20

properties of various point defects in copper in 1958

This work is significant because it was the first case

where an atomistic or discrete method was combined with

elastic theory. In 1965 Johnson reported on the first

calculations of both the single and divacancy migration

....
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21
energies using a copper potential Using a potential

for nickel (the Johnson I potential), Johnson later

reported calculations on the formation and migration

energies of larger clusters and discovered a simple
22

relationship describing these values . In 1966 Cotterill
12

and Doyama published a work on the investigation of the

edge dislocations in copper using a Morse potential; they

also reported calculations for the stacking fault energy

using Born-Mayer and Morse potentials. In 1975 Bennett

discussed the method used to calculate the migration
23

energy in static systems in this work .

The first application of molecular dynamics to

thermodynamic property calculations was done by Alder in
24

1959 . Rahman was the first to use continuous potentials
25

for these calculations in 1964 . The original

calculations were for liquids; Dickey and Paskins
26

calculated the properties of solids in 1969 . These

studies were performed on microcanonical, i.e., constant

volume, systems. Andersen suggested a way of doing

constant pressure simulation in 1980 in which the system
27

volume was allowed to expand and contract . Parrinello

and Rahman subsequently did calculations using a technique

in which the boundaries change shape as well as volume
28

which permitted the lattice structure to change

From this review it is apparent that MS and MD, as I-

I--

.'-°o..O O ..o..,... ..... ... ..... •...... . ........ .
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applied to defect and thermodynamic property calculations

in this work, are well-established methods. Except for

the flexible boundary method, the general techniques in

these areas have not changed significantly. The molecular

statics method has become computationally faster and new

methods have been presented for calculating properties

such as elastic constants. It is interesting to note,

however, that there has not been much cross-fertilization

between workers in defect and thermodynamic property

calculations. Apparently the only potential which has

been extensively investigated by workers in both areas is

the Lennard-Jones 6-12 potential for argon and other noble

gases. This potential is not as applicable to metals as -.

other potentials, however, and the defect properties of

metals are of much greater technological interest than

those of argon. In this work a single potential is used "'"

to represent copper. The hypothesis that a single

interatomic potential can be used to successfully

calculate many different properties of a material is being

tested.

The outline of this work is as follows. In Chapter 2

the potential used in this work is described in detail and -.

compared to some previous potentials used for copper. The

difference between empirical and first principles

potentials are emphasized, and some of the major

disadvantages and necessary assumptions related to the

.*.



-17-

potential used in this work are pointed out. The

computational methods used in this work, molecular

dynamics and molecular statics, are discussed in Chapters

3 and 4, respectively. The molecular dynamics method as

used in this work is covered, including the flexible
28

boundary technique of Parrinello and Rahman . A new

molecular statics method which is an order of magnitude or

more faster than previous methods is presented in Chapter

4.

The method and results of thermodynamics calculations
15, 1

are presented in Chapter 5. Dagens' potential

derived from pseudopotential theory, and the empirical
29

Morse potential , both reproduce copper properties at low

temperatures better than at high temperatures. The reason

for the good performance at low temperatures is that both

potentials (especially Dagens' potential) are particularly

good at reproducing the phonon spectra.

Chapter 6 is devoted to the evaluation of migration

energies of tri- and tetravacancies. Molecular statics

results show that in the order of increasing mobility,

small vacancy defects in copper are single vacancies,

trivacanciez, divacancies, and tetravacancies. To

investigate the experimental consequences of the migration

energies, rate equations describing vacancy defects in

copper are used to model annealing kinetics. In most

cases, it is found that the migration energies of the

' °.

,I -
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divacancies and larger clusters do not affect the

effective activation energy, which agrees with
* 4, 5

experimental observations . It is also concluded that

the migration energies of defects are sensitive to the

potential and are not readily predictable based on the

results for other potentials.

Stacking fault and large vacancy cluster calculations

are presented in Chapter 7. The stacking fault energy is

found to have the same order of magnitude as experimental

predictions if the potential is not extended beyond twelve

nearest neighbors. It appears that the analytic form of

the interatomic potential which is fitted to
1 t.-.

pseudopotential results is inaccurate at large radii.

Vacancy platelets with as few as ten vacancies are found

to collapse to form stable and metastable clusters. The

most stable vacancy clusters are those which arise from

vacancy platelets in the shape of triangles, rhomboids,

and hexagons, in order of decreasing stability. The

triangular platelets invariably form stacking fault

tetrahedra (SFT), the hexagons form Frank loops, and the

rhomboids form a complex intermediate configuration. The

displacement field immediately above the hexagonal loops

is found to differ greatly from anisotropic elasticity
30

theory , which has been used to interpret diffuse X-ray
9, 11

scattering data

The general pseudopotential theory developed by

I-.'
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Dagens is applicable to silver in addition to

13, 14, 15 1
copper and Lam et al has given the potential

parameters for both metals. In Chapter 8, preliminary V

calculations using the silver potential are presented.

These silver results are found to support the general

conclusions of the results in Chapters 5, 6, and 7.

r

p .

pE

kI

. .. .... ... .... ... . .... .... ...



-20-
-

Chapter 2

Interatomic Potentials for Copper

2.1 Introduction

Molecular dynamics (MD) and molecular statics (MS)

can be used to simulate a wide range of material

properties and behavior. Both micro- and macroscopic

properties can be calculated such as the vacancy formation

energy and the elastic constants. Regardless of the

property being simulated, however, MD and MS both require

that the interatomic potential be given. The power of

these methods is that if one knows how atoms interact on

an atomistic level, many other properties can be

calculated without further assumptions. In practice,

limitations on computational resources make it necessary

to restrict interactions between atoms to relatively short

range, and the the system size a few hundred or thousand

atoms. It is well recognized that one's ability to

predict the behavior of a real material depends on the

interatomic potential which is used, and that the F
availability of a suitable interatomic potential is

crucial to a successful computer simulation study.

Another point concerning potentials which applies to

.
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this work is the difference between ideal and real metal

simulations. The properties of an ideal metal are those

which pertain to metals in general. Real metal

properties, however, are those which distinguish a

particular metal from others. An example of an ideal

metal property is that divacancies are believed to be more
4

mobile than single vacancies in fcc metals . A molecular

statics simulation which uses an interatomic potential for

a metal would be expected to find that the divacancy

migration energy is less than the single vacancy migration

energy, and hence that divacancies are more mobile than

single vacancies. On the the other hand, the actual

values of the single and divacancy migration energies of a

metal are real metal properties since they are peculiar to

that metal. An interatomic potential for that particular

metal must be used if one has any hope of calculating

these values. This distinction between ideal and real

metal simulations is important to this work since we are

interested in calculating the properties of real copper.

In this Chapter the potential functions cited and/or

used in this work will be discussed. In the following

section a general background will be given for empirical

potentials, including some of their strengths and

weaknesses. The empirical potentials are used mostly for

comparison here (some thermodynamic calculations are

performed) and this discussion does not really do them
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justice. It should also be pointed out that "empirical"

in this work refers to potentials for which experimental

vs. first principles input is emphasized, which does not
31

follow standard usage , and this point will be briefly

discussed. Following the discussion of empirical

potentials, the pseudopotential method will be discussed

in a general way and the potential of Dagens used in this

work will be described in detail. Some important

approximations that had to be made to use Dagens'

potential are pointed out.

2.2 Empirical Potentials

In this work, interatomic potentials which are

derived by a fit to experimental data will be referred to

as empirical, although often a distinction is made between
31

empirical and semi-empirical potentials . In both cases,

the free parameters of a functional form are fitted to

reproduce an experimentally measured property or

properties. The functional form of a semi-empirical

potential is given in advance of the fit and is suggested

more by the general properties of the material (e.g., a

stable cubic crystal) than by the properties which are

actually being fitted. The functional form of a true 7
empirical potential, however, is suggested by the property

31
or properties to which it is being fitted . The K
potential consists of splines or connected polynomials

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . ... ,
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which can represent a very general function. Except for
32W

*the copper potential of Baskes and Melius briefly

discussed below, the potentials discussed in this section

are properly called semi-empirical potentials. Throughout

the work, however, all potentials except for the :

interatomic potential derived by Dagens' from

pseudopotential theory will be called empirical

potentials.

The general idea behind empirical potentials is to

assume that the interatomic potential can be represented

using a fairly simple functional form, at least over

interatomic interaction radii which are important to the

property or properties of interest. The functional form

contains a few independent parameters which can be fitted

to give the correct results for a few given properties

under very specific conditions. For example, one could

fit a potential to the elastic constants of a material at

a temperature of absolute zero. it is then assumed that

the general form of the potential is accurate enough to

use it for other properties (interstitial formation

energy, vacancy migration energy, etc.) and other

conditions (e.g., T > 0).

one difficulty with empirical potentials is that the

functional parameters are not in general unique and depend

on the material property and conditions used for the fit.

This problem can be rationalized in three ways. The first
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is that the form of the potential is not general enough to

simulate the "true" potential, i.e., the way that real .1

atoms interact. For real materials this is true: one

cannot find a single potential to represent atom-atom

interactions under all conceivable conditions. One

solution to this could be to generalize the potential

further, but simultaneously fitting many properties is

difficult and it is not clear that the potential will be

more realistic. The second explanation is that any form

of central potential is insufficient to represent

interatomic interactions since nonlocal interactions may

be important. This means that any form of central

potential, even as general as a table of values, will not

be sufficient under all conditions. This is a

justification for using empirical vs. pseudopotential

methods. If a single central potential valid for all

properties does not exist, perhaps it is better use an

empirical potential suggested by and fitted to the

properties in which we are interested than to go to all

the trouble to derive an interatomic potential from

pseudopotential theory. Finally, all interatomic

potentials are in the end justified by their ability to

reproduce experimental results. Even if a potential has

some justification of a first principles derivation, to be

useful it must be able to perform well in simulations.

Hence, there are valid reasons for using empirical

potential in spite of their disadvantages.

, . . , , _... ,... ....... <. ,....... .. . . . . . ... ... . - .. . . .. .. ° , , .. . ... . - -. I
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Among the different forms of empirical potentials,

three are referenced in this work. The first is the

Born-Mayer potential,

u(ri) = L exp(-ri ) (2.1) FT
iij i j

where r is the interatomic distance and u is the potential

energy. This potential was not used for any calculations

here, but is cited for stacking fault results by Cotterill
12

and Doyama . The values of the parameters are -"-

-1 33
L = 0.053 ev and = 13.9 A , from Gibson et al . Since

the Born-Mayer potential does not contain an attractive

part, an external pressure must be applied to the system

to maintain a given density. This is a problem shared

with pseudopotentials, except that the external force can

in principle be calculated for the pseudopotentials.

The second empirical potential cited in this work in

the Morse potential,

u(r ) = D {exp[-20L(r -r -
ij ij 0

2 exp[-oL(r -r )]} (2.2)
ij 0

where D, ,k, and r are constants to be specified.
0

Cotterill and Doyama used a Morse potential in a study of
12

edge dislocations and stacking fault energies in copper

The potential was fitted to the sublimation energy of

copper, and the parameters for a truncation radius at 176

7 I
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"N

atoms are D f 0.3236 ev, m, = 1.2941 A , and

r = 2.9133 A.0 The third empirical potential is a modified Morse
29

potential used by Schober et al to calculate

interstitial properties. The functional form of this

potential is

u(r ) = D [exp[-2o (r -r )] -
ij ij 0

2 exp[-ot(r -r )] +
ij 0

4
B(r -r )H(r -r ) + V (2.3)

ij NN NN ij 0

where

1, x < 0 ,--

ht'x) =(2.4)
0, X > 0

The extra terms, compared with equation (2.2), makes the

potential softer in the nearest neighbor region and

provides two more parameters which can be used for fitting
29

properties . This potential was fitted to the vacancy

formation energy and elastic constants of copper and the

potential parameters are D = 0.227 ev, r = 0.71555a,

-1 4~

= 7.6499a , B = -1200ev / a , V 0.0233 ev, and
0

1/2
r = a / 2 , where a is the lattice constant. Since
NN
this potential was fitted to more recent values of the

I . J

-. .-
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vacancy formation energy and was also fitted to the bulk

modulus, it is used in Chapter 5 to do thermodynamic

calculations of copper for comparison with the Dagens'

interatomic potential discussed below.

An empirical potential recently derived by Baskes and
32

Melius was also considered . Baskes and Melius did a

true empirical fit for seven fcc metals to a large number

of properties, and had a separate term for the cohesive

electron energy (the structure-independent term in the

pseudopotential). Unfortunately, they apparently used

outdated values for the vacancy formation and migration
4

energies in the fit for copper (see Balluffi and
5

Wienhold for recent estimates of these values). De Leeuw

et al used this potential to calculate copper properties

near the melting point and found that a significant

external pressure had to be applied to maintain the
34

correct density . Because of these problems this

potential was not used in this work.

2.3 Pseudopotentials

There is a long history behind the pseudopotential

method, and the classic work was published by Harrison in
16

1966 . The pseudopotential method is an attempt to

derive interatomic potentials from first principles. It

takes advantage of the free-electron nature of the

conduction electrons in metals, which are free to roam
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throughout the metal instead of being associated with

individual atoms. The metal is separated into two

components: the conduction electrons, which are

represented by some type of average interaction, and the
16

metallic ions, whose electrons are tightly bound . The

strong potential inside the metallic ions is then replaced

by a weaker potential which preserves the energy
31 5

eigenvalues of the conduction electrons . The original

pseudopotential method proposed by Harrison did not

require experimental information to be introduced into the

derivation of potential. Since the late 1960's, however,

modifications of the method which incorporate some

experimental data have proven more successful for some
35, 36, 37

metals than the pure pseudopotential approach

After discussing some general aspects of pseudopotentials,

the potential used in this work will be covered.

Interatomic potentials derived from pseudopotential

methods have some common characteristics. The first is

that the potentials are oscillatory beyond a range of
38

about one lattice constant . These oscillations converge

to the Friedel oscillations at long range. Whether or not

these oscillations are physically significant is not
39, 37

well-established . One practical consequence of the

oscillations is that these potentials are long-ranged and

must be truncated to be used for molecular dynamics and

statics. This can lead to convergence difficulties,

. :r
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especially for properties which depend on the long-range

part of the potential.

A second characteristic of the potentials is they

contain structure-dependent and independent components

which arise from the treatment of the free electrons. If

the total cohesive energy of the crystal is included in

the interatomic pair potential u , the total energy E canii I
be written

E= u(r ) (2.5)
i<j ij

where r is the distance between atoms i and j. Equation
ij

(2.5) is valid for many empirical pair potentials

including the Morse and modified-Morse potentials

discussed in the previous section. In metals, however,

and particularly when the pseudopotential method is used,
40

the total cohesive energy is given by

E = X u(r ;V) + U(V) (2.6)

i<j ij

The first term in (2.6), similar to the right-hand side of

(2.5), is the structure-dependent component of the total

energy and depends on the positions of the atoms.

This part of the potential is used directly in molecular

dynamics since it describes how one atom interacts with

another. The second term of (2.6) is the structure-

independent component and depends only on the system

volume and not on the positions of the atoms. It

.5,o
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physically represents the cohesive energy provided by the
IV

conduction electrons, which are not directly simulated.

It is not necessary to know the structure-independent part

of the potential to calculate many properties of the

material. For example, if we wanted to determine the

stable lattice configuration or calculate defect formation

energies at a given density, we would only need the

structure-dependent part of the potential. For this

reason the structure-independent component is not always

provided in derivations of pseudopotentials. This is

unfortunate since the volume derivative of the total

energy is the system pressure, and this derivative

obviously depends on the second term of (2.6). When the

structure-independent component is known, it adds an extra

complication to direct thermodynamic and mechanical

property calculations. When it is unknown, some

thermodynamic properties simply cannot be evaluated.

To make matters worse, the structure-dependent

component of the potential is also volume dependent.

Hence, the form of the interatomic potential u(r; V)

depends on the density of the system. If simulations are

done at the same volume V , a single interatomic potential
0

u(r; V ) can be used and the the structure-independent
0

component U(V ) is not necessary as long as it is
0

sufficient to calculate the total energy within a

constant. To compare calculations at a different volume

- ~ -tA .... , -. . . . . . . . .. - - -. . . . . . . .



V , however, we not only need to know the structure-
1

independent component U(V ), but we also need a different
1

interatomic potential u(r; V ).
1

Another complication in using pseudopotentials in

molecular dynamics and molecular statics calculations is

that they generally do not come in a simple functional

form. The interatomic potential calculated using the

pseudopotential method consists of a table of values of

energy vs. interatomic radius. In principle this is not a

problem; one can calculate the table to any desired

accuracy with sufficient computer resources, and the table

can be interpolated using standard numerical methods such

as splines. However, it requires a considerable amount of

space to publish a table of sufficient accuracy for all

calculations, and programming would be tedious and prone

to error using such a table from a paper. The

pseudopotential method is difficult enough to preclude

each worker from repeating the calculations to get the

interatomic potential function, especially using the

advanced methods necessary to get the best interatomic

potential. One solution to this dilemma is to fit the

interatomic potential generated by the pseudopotential

method to a very general functional form suggested by the

physics of interatomic interactions and the structure of

the interatomic potential itself. Of course, the function

to which we are fitting the pseudopotential interatomic

". - ,-. -. . . .,. . - . . .' ". .,. • - -. . . - ', % " . . . . . , , , . . . • . . . • - . . . - _ ' ".
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potential should not be so complicated that it also causes

difficulties.

In spite of all of these problems there still is much

interest in developing and using interatomic potentials

derived from pseudopotential theory. The reasons are that

the potentials are better justified theoretically than

empirical potentials, and also that the pseudopotential

methods provide a theory of interatomic interactions in

metals.

The interatomic potential used in this work is based
13, 14, 15

on the work of Dagens . This was the culmination

of attempts to account for the d-band in the noble
41, 42

metals . Harrison had previously noted that a basic

assumption behind the pseudopotential method was that the

core and conduction electrons could be cleanly separated

such that the core of the atom could be treated as an
43

ion . The assumption only strictly holds for the alkali

and polyvalent metals for which reliable interatomic

potentials have been derived using the pseudopotential

method. Unfortunately, the assumption breaks down in

noble and transition metals.

The results of Dagens' calculations were fitted to a1 r

general interatomic potential of the form -

. .. . -
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2

u(r) 1 - exp[-O(r-r ) ]} x
1 , "y-

CI Cos?~ S1in
C +-- ++__

r r r

2
B exp(- rSn

n 3-n
r

D exp(-9r) (2.7)

~~.r, ~ ?' ~ZkFrr

The parameters for the fit are given in Table 2-1. The

parameters for silver are also included in Table 2-1, as

this potential will be used in Chapter 8. The copper

potentials discussed in this Chapter are plotted in Figure

2-1. The differences between the various 
potentials is or

striking when it it considered that they are all for the

same metal. As Lam points out, the copper potential has

a minimum near the first nearest neighbor radius. Whether

or not this is physically realistic is not
37

well-established

It was not possible to determine the structure-

independent part of the potential for this work;
44

apparently, this is a very difficult task . This does

not affect the defect calculations presented in this work,

S-," * ". . . .A " - %. . .. -. % * ... % .. - ..
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C 0.2 0.3

r 3 3
1

C 0.265 0.186

C -0.252 1.34
1S -20.85 -22.05

1.429 1.528

0.163 0.109

B 16.55 17.669
0

B -0.0033 -0.459
1

B 0.0825 -0.2044
2

B -0.1576 -0.02728
3

0.74 0.8

D 0.1246 0.2819

k 0.7189 0.6387
F

Table 2-1: Interatomic Potential Parameters
1

for Noble Metals (from Lam et al )
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but it made it impossible to calculate the pressure for

the thermodynamic calculations. This problem will be

discussed in more detail in Chapter 5.

As pointed out earlier in this Chapter, the

interatomic potentials derived using the pseudopotential

method are long-ranged. To overcome this difficulty,
45

Duesbury et al developed a damping factor for the

potential u(r) such that

ef f 2 2
u (r) = u(r) exp(-d r ) (2.8)

eff
where u (r) is the potential actually used in the1 -.

molecular statics calculations. Following Lam , the

copper calculations using the Dagens' potential were done

using d =0.25 a ,where a is the lattice constant.

.-.
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Chapter 3

Molecular Dynamics

3.1 Introduction

The thermodynamic properties of copper were

calculated in this work using a technique called

computational molecular dynamics (MD). In MD one solves

the equations of motion of N atoms subject to a given

interatomic potential using a computer. Given N atoms

with coordinates r and velocities v, 1 <i < N, one
i i

solves the set of equations

dv (t) du~ri ij
m = - E (3.1)

dt j'i dr
ij

for r (t) and v (t), where m is the atom mass, r is the
i i ij

distance between atoms i and j, and u(r) is the

interatomic potential. Many properties of the system such

as its temperature, internal energy, and pressure, can be

calculated since they can be expressed in terms of r (t)
i

and v (t).
i
The system that one simulates using conventional MD

has a constant number of atoms N, a constant volume V, and

a constant total energy E. This type of system is called a
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microcanonical ensemble. The ensemble itself, which

consists of all the possible configurations of the system

with the given N, V, and E, is uniquely specified by these

values. Each configuration of the system has it's own

temperature and pressure, however, and the temperature and

pressure of the ensemble is the average of these values

over all the possible configurations in the ensemble.

Even though the temperature and pressure of the ensemble

are well-defined and unique, one cannot reliably estimate

their values without taking an average over many -.

configurations or MD time steps. Consequently, one cannot

know the temperature and pressure of the ensemble which is

being simulated until after the run is completed.

These characteristics of conventional MD affect its

use for thermodynamic property calculations. As pointed

out above, it is necessary to average the temperature and

pressure (and other properties which fluctuate) over many

time steps to determine the ensemble averages. There is

no practical way to average over all possible

configurations, since (classically) there are an infinite

number of them, and the best one can do is get an estimate

of a fluctuating property. It is important that

"unlikely" configurations, i.e., configurations which are

very unlikely to occur, are excluded because their

property values will distort the averages. These unlikely

configurations have the greatest chance of occurring at

. . .- " .
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the very beginning of the simulation, since as the __

simulation proceeds it will approach more probable

configurations. Hence, it is important to select the

initial configuration properly. The consequence of not

knowing the temperature and pressure of the ensemble one

is simulating until well into the simulation is that is

difficult calculate ensembles with a given pressure and

temperature. This is unfortunate since experimental

properties of a material, especially those for solids, are

usually presented at a given temperature and for

atmospheric pressure. Without special techniques, the

best one can expect to do is to calculate ensembles for

various values of V and E and interpolate to the desired

temperature and pressure. In this work, velocity-scaling

is used to set the simulation temperature and the flexible

boundary technique is used to set the simulation pressure.

In this Chapter the molecular dynamics method will be

discussed. The integration scheme used to solve (3.1) for

r (t) and v (t) is presented first. This is followed by a

discussion of the initial and boundary conditions, which

includes the selection of the initial configuration and

velocity-scaling. The equations for calculating basic

properties are given, and computational time-saving

methods used in this work are discussed. Finally, the

flexible border method is outlined.

''"

4.
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3.2 Integration Scheme

The fundamental feature of molecular dynamics is the

solution of the equations of motion given by (3.1).

Except for simple cases it is not possible to solve these

equations analytically and it is necessary to resort to

numerical methods. Since the solution of these equations

is so basic to computational molecular dynamics, the

selection of the numerical integrating scheme is

important. A detailed study of integration methods for MD
46

applications has been made by Beeman . The method which

appears to be is a Gear-Nordsieck method discussed by
47

Haile . This method has three basic steps:

1. Prediction - use values of positions and
derivatives at time t to estimate the positions
and derivatives and t+At.

2. Evaluation - evaluate the potential function,
i.e., the right hand side of (3.1), at the
predicted positions.

3. Correction - using the results of the evaluated
potential, correct the positions and
derivatives.

(n) th
Let r (t) be the n derivative of the position of

P(n)
atom i and time t, and let r (t+&t) be the predicted

th
value of the n derivative of the position of atom i at

time t+At. For an integrator of order p, we need theP(n)
derivatives up to n = p. We estimate r (t+,t) by

-i
.- expanding the Taylor series in r (t) about t, where

%? .',i j . ,, - -.-. -. -.. . -.,. - , -. .j ,-, -.. . .. . . ... ,.. .. .. , .. .. - ... , • -
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(n+k) k

P(n) p-n r
r (t+at) = (3.2)
i k=O k!

where p is the order of the integrator we wish to use.

The next step, and the core of a molecular dynamics
P(n)

code, is the evaluation of the potential for r (t+&t).
i

Most of the computer time in a molecular dynamics run is

spent in this step, and many of the details of the

implementation are buried here. These details, such as

spatial boundaries which are imposed on the system and

time-saving techniques for the evaluation of the

potential, will be discussed in subsequent sections.

The evaluation of the right hand side of (3.1)

yields, after dividing by the mass m, the second
(2)

derivatives r (t+&t). The difference between predicted

P(2) (2)
value r (t+&t) and the calculated value r (t+&t)

i i
(2)

yields an estimate of the error in the prediction &r

where

(2) (2) P(2)
Ar r (t+At) - r (t+at) (3.3)

i i

(2)
The error &r is now used to make corrections to all the

derivatives where

"' . " " " "'' $ i" 4 ; . : .'" " " "" " " " " " " " " -" -".-' . . . . .. .. . . . . .. . ..-.' - -" " .- '" -' '.-.'''" ''' ' - " -. -.. ". . -
"

.
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(n) P(n)
r (t+&t) = (t+At) +
i i

n-2
(2) (At) n

2! (3.4)

(n)
where oL is given in Table 3-1. Using the values r we

i i
now make another time step by repeating the process.

Order pi
3 4 5

O. 1/6 19/120 3/16
0

5/6 3/4 251/360

CL I 1 1
2

-L 1/3 1/2 11/18
3

-- 1/12 1/6
4

--- --- 1/60
5

" Table 3-1: Values of l. for Gear Predictor-Corrector

2
Algorithm

We found it useful in some phases of this work to

extend the Gear algorithm to perform in a variable

time-stepping mode, where the integrator varies the size

of the time-step automatically. The idea behind variable

stepsize integrating algorithms is to estimate the error E

in making a timestep by comparing the results of two

...........................................



PrI.

-43-

integrators of orders q and q+l. If the estimated error E

is larger than the maximum allowed error E , we repeat
max

the step at a smaller stepsize. If the error is less the

maximum allowed, we accept the step and change the
[q]

stepsize based on the difference. Let r (t+At) and
i

[q+l]-
r (t+At) be the positions calculated using integrators
i

of order q and q+l. The estimated error for the time step

is given by
:-:4

I (q+l] [q] f
E = max r (t+At) - r (t+At) (3.5)

i, k i,k i,k

th
where r is the k component of r . The new stepsize 1.2

i,k i
48

at is calculated from the old stepsize At by
new old

0.1 At < 0.1
old

At . to 0.1 < < 2.0 (3.6)
new old

2.0 At 2.0 <
old

and

l/(q+l)
= 0.9 (E / E)

max

The new stepsize At is used if the maximum error is
new

exceeded and we have to repeat the step, or if we don't

exceed the maximum and the step is accepted.

i ..
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The usefulness of the variable stepsize method is

limited in the applications in this work. The major

drawback of the method is that two function evaluations

are necessary, which automatically makes it almost twice

as slow as the fixed stepsize method. The time step size

using the variable step algorithm is fairly constant

during thermodynamic property calculations, and certainly

does not vary by a factor of two. The advantage of using

a variable stepsize method is that one does not have to

select a stepsize and hence the amount of work the user

has to do and the chance of user error are decreased. We

took advantage of this in some of the property

calculations; the variable stepsize integrator was used

for 25-100 steps, and the smallest stepsize necessary

during that period was used for the remainder of the run

in a fixed stepsize mode.

3.3 Boundary and Initial Conditions

The specification of a differential equation problem

is incomplete without boundary and initial conditions.

Equation (3.1) is a second order ordinary differential

equation in time and requires 2Nd initial conditions,

where N is the number of atoms and d is the number of

dimensions. Physically, these initial conditions are the

initial positions and velocities of the atoms.

As pointed out in the Introduction to this Chapter,

°. o.. . . . . . .
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it is essential to exclude "unlikely" configurations when

taking property averages. A "likely" configuration is one

in which the atoms are evenly distributed in the system

volume and the velocities are distributed in a Boltzmann

distribution. It is possible to set up a configuration

such as this by assigning the atoms to lattice sites of a

lattice type such as fcc, and assigning initial velocities

randomly according to a Boltzmann distribution. At a

nonzero temperature, however, one does not expect to find

the atoms located at perfect fcc sites but slightly

displaced from these positions. The practical solution to

this problem is to note that as the simulation proceeds,

one expects that the system will approach more likely

configurations, and hence regardless of the initial

configuration the system eventually approaches

configurations which are suitable for property averages.

This process is called "equilibration" and may take a few
47

hundred time steps . For some property calculations the

atoms were set at fcc lattice sites and the velocities

were assigned from a uniform distribution. The simulation

was started, but property averages were not taken until a

few hundred time steps had passed. In other calculations,

the final configuration from previous simulations was used

as the initial configuration.

So far no mention has been made about the assignment

of the initial velocities of the system except to say that

AI
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they are selected from some type of distribution or from

previous runs. An important characteristic of MD using

the periodic boundaries discussed below is that linear V :

momentum is conserved. The initial linear momentum

introduced into the system is maintained throughout the

simulation. If this momentum is nonzero, the total system

will translate over time and the temperature will be

calculated incorrectly since it will include the

translational velocity. Hence, it is important to insure

that the linear momentum of the system is zero.

The initial velocities of the system provide a way of

setting the approximate temperature of the system.

Although it is not possible before actually doing the

calculations to know the final average temperature of an

ensemble, it is possible to calculate and/or set the

instantaneous temperature of a configuration. If T is the

current configuration temperature and T is the desired
des

temperature, one can set the instantaneous temperature to

T by multiplying all of the atom velocities by
des 1/2 

47
(T /T) . This is called velocity-scaling . In this

work, velocity-scaling was used over a few hundred

preliminary time steps, during which the system

equilibrated and no property averages were calculated.

The system was then allowed to rest for twenty or more

steps, and then property calculations were started. The
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final average temperature was usually within ten percent

of the desired temperature.

Since there are no spatial derivatives in (3.1)

(recall that u(r ) is a known function), it would seem

that spatial boundaries should not be a problem. The

problem arises, however, because we are trying to simulate

a bulk material containing a large number of atoms, but

are computationally limited to a few hundred atoms and

simulation volumes with edge lengths of a few lattice

constants. On a scale this size, where almost every atom

can interact across the simulation boundary, the boundary

conditions are very important. To overcome this

difficulty, periodic boundaries in which the simulation

volume is surrounded by images of itself as shown in
47

Figure 3-1 are commonly employed . In two dimensions,

every atom has eight images. An atom interacts with the

nearest image of another atom. This is shown in Figure

3-1 where atom A interacts with the image of B in the

lower left volume.

3.4 Time-Saving Methods

It is possible to save considerable amounts of

computer time by taking advantage of some time saving

techniques. In this section we will discuss the

techniques used in this code.

"p - .Y . " . " i .. .- ..'" --' . ." ... .. -' - -- ..-.. . . -, . v . ..i. ... / -." ., . ,: . . . ., . '- .-. .. ,._ - - ., .., -
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j Figure 3-1: Periodic Boundaries
Ov

The simulation cell in the center is surrounded
by images of itself. Atom A, only shown in the

center cell, does not interact directly with atom

B but with one of the images of B.

121%w

------------------
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3.4.1 Verlet Neighbor List
17

As shown in Equation (3.1), it is necessary to

calculate the force between each atom during every time

step. In principle this requires N(N-1)/2 evaluations of

the potential function. As noted in Chapter 2, however,

the potential function is normally truncated so that there

are atoms in the simulation which do not directly interact

with one another during some part of the run. The

distance between the closest images of two atoms was

greater than the cutoff distance for the potential, it is

evident that the potential between the two atoms is

trivial calculate since it is zero. At this point,

however, computer time has already been wasted calculating

the distance between two noninteracting atoms. Since we

have N(N-1)/2 interactions to calculate, this wastage can

be considerable.

Of the suggested solutions to this problem, the
49

standard Verlet list was used in this work The Verlet

neighbor list is used to keep track of the atoms which

have a nonzero interaction. One can think of the Verlet

list as a NxN truth matrix T , where T = 1 or 0 if
ij ij

atoms i and j do or do not interact, respectively. T is
ij

evaluated by actually calculating and checking the

distances between all the atoms. For a subsequent given

number of time steps, instead of calculating the distance

;A
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between atoms i and j, we just check to see if T is 1 or
ij

0, which is considerably quicker (and only calculate the

distance if it is necessary to evaluate the potential).

Since we are doing a dynamical calculation, it is evident

that T will eventually become out-of-date (in the worst
i j

case, after one time step). We overcome this difficulty

by including atoms from slightly larger radii than the

potential cutoff radius. Although we have a few extra

atoms in the list, we still calculate fewer than N(N-1)/2

radii and the list will remain up to date for a greater

number of time steps. In this work, the cutoff range for

the Verlet list was set at l.lr , where r is the cutoff
C C

radius for the potential, and the list was updated every

ten potential evaluations. It is probably unnecessary to

to update the list this often since we were usually

simulating solids, but it was found that the percentage of

time spent updating the list at this frequency was

relatively small.

The truth matrix T is not usually implemented as a
ij

matrix on the computer for a number of reasons. Since T
ij

is symmetric and the diagonal is all zeros, we actually

only need to know the strictly upper triangle of T . If
iij

the potential cutoff radius is much smaller than the

simulation volume size, many elements T are 0 and the
ij

matrix is sparse. Even though it is much quicker to test

T than calculate and test the distance be atoms i and j,
ij

I

. . . . . ... ]
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we still have to test (N-l)(N-2)/2 values. Finally, the
2

number of elements in T is proportional to N , so the
ij .

matrix quickly gets large as N increases.

The standard way of implementing the neighbor list is

illustrated schematically in Figure 3-2. The truth table

" T is shown for a hypothetical system of N = 5 atoms. As
ij

pointed out above, the upper triangle of T is all we
ij I-

need to know. The idea behind the method is to keep track

of only the l's in T . This is done with five vectors,
io

one for each atom, where we note that the last vector is

always null. The final step is to pack the vectors in a

sequential list, where we keep track of the start of an

atom's list using another vector.

3.4.2 Evaluation of the Potential

The potential function given by given by Lam and

discussed in Chapter 2 contain many transcendental

functions which are time-consuming to calculate on a

computer. Since most of the computer time in MD is

usually spent calculating the potential for each atom-atom

interaction for each time step, the potential in its

analytic form is a serious practical problem. The common .

solution is to take the complicated potential and fit it

to a functional form which is computationally easy to

evaluate, such as polynomials, splines, or table-lookup.

7 7'7



4J -2

-~~5 ... 0M4
'4

42

00 -

0 04 r..o
00
0 4J

C'4 us
IL4 W~~

Cs.. - o .- . - r
x 04-

-0'- 0- 0

(6 0/ 0 c$-C- CIS ir. I



-53-

We used a spline fit which had maximum relative error of
-4

less than 10 over the radii of interest.

In addition to using the spline fit to save time, we

also used another computer-related method. During each

time step in an MD simulation it is necessary to calculate

to force between each atom. The general procedure is to

calculate the radius r between the two atoms and then

calculate the force for radius r. This requires

calculating this each component of r and then finding the

Euclidean norm by taking the square root of the sum of the

squares of the components. Depending on the computer

used, the step that often takes the longest is taking the

square root. If the potential function is particularly

simple the calculation of r may take longer than

calculating the force. For this reason it is possible to

save a considerable amount of computer time if the

evaluation of the square root can be avoided.

Let U(r) be a potential function, where r is the

radius between two particles. During an MD run we need to

calculate

ij
r F-

ij dU k
F (r ) = - - ij x - (3.7)
k dr r=r ij

r
ij th i j

where r is the k component of r -r . Also define
k

another potential W(s)

"° . . . .. .. . . . . . . . . . .
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W(s) = U(r) (3.8)

2
where s = r . It is readily shown

dW(s) 1 dU(r)
= - x -(3.9)

ds 2r dr

and

ij dW(s) ij
F (r ) = -2 - r (3.10)
k ds k

In most simulations involving thermodynamic property

calculations the virial term must be evaluated to

calculate the pressure. This can be expressed

dU(r) dW(s)
r = 2s "

dr ds

Hence, if the potential function can be expressed as a
2

function of s = r , we can calculate the energy, force

components, and virial term without taking a square root.

In this work this involved fitting the potential to s

instead of r. The run times on the Compupro 8086 system

were reduced by approximately forty percent. We also note
4" -

that the commonly used Lennard-Jones 6-12 potential is
2

easily expressed as a function of r , although the shifted

force method in its common form cannot since that puts an
. 47

r term in the potential . It is possible to shift the r
2 07

force using an r term, however, which probably has as

much physical significance as the standard way.

.-...........
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3.5 Thermodynamic Property Calculations

Three basic thermodynamic properties are normally

calculated in MD simulations: the total energy E, the

temperature T, and the pressure P. In the microcanonical

simulations performed using conventional molecular

dynamics, the simulation volume is fixed and hence the

mass density is predetermined. Since the total energy

should be constant, it is also a useful measure of the

correctness of the computer code. In this section we will

outline how E, T, are P are calculated using molecular
47

dynamics following Haile . Other properties which are

also calculated simultaneously with the thermodynamics

properties, the radial distribution function, order

parameter, and the mean-square displacement, will also be

discussed in this Section.

The total energy E is the sum of the kinetic energy

K.E. and potential energy P.E. of the system,

E = K.E. + P.E. (3.11)

The instantaneous kinetic energy is given by

3m - 2K.E.(t) = -Zv (t), (3.12)

2 i i

i.e., the sum of the kinetic energies of each atom. The

instantaneous potential energy is the sum of the

interactions between each atom,

p. -: - . . ., :-: i :- .-.: : . . .-.--. . . . . . .. . < ... . - . . - ..- • .- < . - ." . - --
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P.E.(t) - u(r ) (3.13)
j<i ij

Since we are solving Newton's equations of motion, we

expect the total energy E to be constant, but because of
-4

numerical errors, E varies by about 10

The instantaneous temperature T can be extracted from

the kinetic energy since

3
- NkT = K.E. (3.14)
2

and solving for T

2
T = - K.E. (3.15)

3Nk

The simulation pressure P is more difficult to

calculate than U and T. The instantaneous pressure P is

given by

du(r
NkT 1 ij

P =--- r (3.16)
V 3V i<j ij dr

ij
where T and V are instantaneous temperature and volume.

The virial sum, which is the second term on the right hand

side, can be calculated concurrently with the right hand

side of (3.1) since du/dr must be calculated anyway.

Given the system pressure, we can now calculate the

enthalpy H from

......... ,•.....,....... .......................



H E + PV (3.17)

where V is the system volume.

The radial distribution function g(r) is an

unnormalized probability density function for finding an

atom at a radius r from another atom. It can be --

calculated using

<N(r + Ar/2 >
g(r) = (3.18)

V(r + Ar/ 2 1p )0-

where <N(r + &r/2> is the time average number of atoms

between r-Ar/2 and r+,&/2, V(r + Ar/2) is the volume of the

spherical shell between these two radii, andp is the

number density.

The mean-square displacement MSD(t) is the square of

the average displacement of all the atoms in the system at

time t. For a system containing N atoms, it is given by

1 2
MSD(t) = - .[r (t) - r (0)] (3.19)

Ni -i i

where r (t) is the position of atom i at time t.
i

The order parameter is a measure of the order of the

system. The short range order parameter used in this work
50

is given by

0 = exp(iK.r.) (3.20)
ij i



-58-

where K is a reciprocal lattice vector and r is the

vector between atoms i and j. In this work three values

of K were used:

411
K = -[ 1,0,0] (3.21)
-1 a

41f
K =- (0,1,0] (3.22)
2 a

K = -[ 0,0,1] (3.23)
3 a

The order parameter results given in Chapter 5 are the

averages of the individual order parameters calculated

with these three reciprocal-lattice vectors.

All the these quantities (except for the total

energy) fluctuate during the simulation and averages must

be calculated. For a simulation of M time steps, the

average of a property A(t) is

I M
<A> = - z.A(t )

M m m

3.6 The Parrinello-Rahman Method

One of the disadvantages of using conventional

molecular dynamics is the that the constants of motion are

the number of atoms N, the volume V and the total energy

E, which is called a microcanonical ensemble. The initial

conditions (atom positions and velocities) and the system

volume specify N, V and E at the beginning of the

:'o-* -I " " - -" " . . J' J .- - - -- s -• • • - .- - .. . . .. .
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simulation and these values do not fluctuate. The

temperature and pressure, however, fluctuate with time
4.which requires us to calculate a few thousand time steps

to accurately calculate their average values.

Consequently, we don't know the temperature and pressure

of the system until after the run is finished.

Unfortunately, experimental data for solids is usually

given for a single pressure (i.e., atmospheric pressure),

which makes it difficult to compare MD results with

experimental results. A way to overcome this difficulty
27

was proposed by Andersen ,in which one could apply a

pressure to the system and the volume would fluctuate.--

This was generalized by Parrinello and Rahman, who

developed a method to apply a general stress to the system
28, 51

by allowing the shape to change .Parrinello and

Rahman's method was implemented in this work to allow us

to calculate thermodynamic properties at a given pressure.

Let the system volume be a parallelopiped, as shown

in Figure 3-3, whose edges are the three vectors a, b, c.

Let r be the position of atom i in the volume. We can
i

now define a vector s such that

r =hs (3.24)

where h is a 3x3 matrix h [ a, bc.Since each atom is
k k th

confined to the volume, 0 < s < 1, where s is the k
i -i

component of s *We now observe that we can easily change
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the volume and shape of the system by changing h. The key

to the flexible boundary method is define equations of

motion for h (and alter the equations of motions of the

atoms) such that we can apply a given hydrostatic pressure

to the system. If u(r) is a pairwise interatomic

potential, these equations are given by

-1.
" S =-m (u'/r H(s -s)-

-" --i i j~iij -" -"

G Gs , i,j = 1,2,...N (3.25)

-1

= W (!"-p )a (3.26)
= = ext

where

-l
hT) (3.27)

T
G =h h (3.28) -

= II h II (3.29)

x "x. "T.1 2 1 ! - m v v - .-

i. (u'/r )r r (3.30)j>i ij -ij-ij

. . ...-. 1
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th
and m is the mass of the i atom. W is physicallyi

equivalent to a wall mass and provides inertia for the

boundaries of the simulation volume. Equations (3.25) and

(3.26) are valid when a hydrostatic pressure is applied to

the system, but they can be generalized for an arbitrary
51

external stress which is not necessary in this work.

We now make some observations about the trajectories

generated by solving (3.25) and (3.26). The Hamiltonian

corresponding to equations (3.25) and (3.26) is

2
=1/2 m v + u(r )+

i i i j>i ij

1/2 W Tr hTh + pf? (3.31)

where p is the applied hydrostatic pressure. The first

two terms comprise the Hamilitonian for conventional

molecular dynamics, i.e, a microcanonical ensemble, in

which the total energy E is constant. The fourth term is

the pressure work contribution to the enthalpy. Except

for third term, the constant of motion is then the

enthalpy

H = E + p1? (3.32)

The third term of (3.31) is the kinetic energy of the

boundary. Its magnitude can be estimated by noting that

it contains nine degrees of freedom (one for each element

.
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Figure 3-3: Simulation Volume of a
Fleiible Boundary System S

Ir.%
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of h), and the average amount of energy in the boundaryI IT..
will be 9/2kT, where k is Boltzmann's constant. On the

other hand, the first term of (3.31) is the kinetic energy

of the atoms and on average is 3N/2kT, where N is the

number of atoms. Ignoring the third term results in an

error of 3:N, and consequently the enthalpy H is the

constant of motion within this error.

One ambiguity in using the Parrinello-Rahman flexible

boundary method is the selection of the wall mass W. For

calculation of equilibrium averages, the selection of the

value of W is immaterial since the averages are

independent of the masses, as long as the property

averages are accumulated over a few oscillations of the
27

walls. In this work, we followed Andersen and
51

Parrinello and and Rahman and used W = 20m. Recently,

De Leeuw et al used a wall mass of W = m so that the

energy transfer between the walls and atoms was
34

optimized . They also tested other values of W and found

that there static results were independent of the

selection.

II, . -o,.~
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Chapter 4

Molecular Statics

4.1 Introduction

Molecular statics (MS) is a method of obtaining

stable and metastable configurations of static systems. A

stable configuration is the lowest energy configuration of

the system. A configuration is metastable when it is at a

local energy minimum such that small perturbations of the

configuration will return to the metastable configuration.

If a metastable or stable configuration is used as an

initial configuration for a molecular dynamics (MD) run,

the atoms would never move provided they have no initial

velocities, i.e., the initial temperature of the system is

zero. One can therefore consider MS as a way of

calculating the properties of a system at a temperature of

absolute zero. The two methods differ in the desired

goal, however. The centerpiece of molecular dynamics is

the faithful solution of Newton's equations of motion. In

molecular statics, one is interested in determining stable

and metastable configurations at T = OK; the main concern

is getting to those configurations as quickly as possible

and insuring the configuration is indeed stable or

metastable.

* . . . . . . . . . . . . .*.o
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Since the earliest computational defect studies by
20 18

Tewordt et al and Girifalco et al , MS has been the

preferred method compared to MD for calculating defect

formation, migration, and binding energies. There are two

reasons for this. The first is that MS is computationally

much faster than MD. In MS one is interested in a single

configuration -- the lowest energy configuration for a

given system. Once this configuration is reached, usually

after no more than a few hundred "time" steps, the

computer run is finished. On the other hand, using MD one

is simulating a material at a given temperature and one

must wait for events to happen. For example, if a vacancy

jumps once a picosecond on the average, one must calculate

a thousand time steps between each jump using a time step

size of 0.001 picoseconds. To accumulate good statistics

for calculating the average jump time and other

properties, a hundred and preferrably more jumps are

necessary which will require at least a hundred thousand

time steps. In this example, MS is three orders of

magnitude faster than MD. It also should be pointed out

that the calculation of defect energies using MD requires

results at different temperatures, so at least two such

long runs must be made. The second reason MS is preferred

over MD is that data analysis is considerably easier. The

result of an MS calculation is a single configuration of

atoms in which the atoms are motionless. This final

"i,
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configuration can be analyzed on-line, i.e., just after

the run, and/or saved for future reference. In MD,

however, one has generated thousands of configurations

during a run. To make matters worse, the atoms are moving

and are almost certainly displaced from their average

positions. This makes it difficult to even locate the

defect, especially at high temperatures.

Regardless of the advantages of MS over MD for the

purpose of calcuating defect energies, it must be pointed

out that MS results are strictly valid only at T = OK.

Some defect properties (see, for example, grain-boundary
50

melting transition work of Ciccotti et al ) cannot be

simulated using MS. For those properties which can be

calculated using MS, however, one can argue that the

temperature dependence of the property is overshadowed by

the uncertainty in the interatomic potential. If the

given interatomic potential will only reproduce the

migration energy of a vacancy within ten percent of the

experimental value, it could be pointless to attempt MD

calculations since the variation of the migration energy

with temperature may be less than this. The only

extensive comparison of MD and MS defect calculation was
52 52

done by Guinan et al . Guinan et al calculated the

migration energy of interstitials in tungsten using both

MD and MS, and found the results agreed within the

uncertainties of the methods.

|i
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Since MS and MD are closely related, much of the

discussion in the previous Chapter will apply to MS,

especially techniques for speeding up the calculation of

the potential function between atom pairs discussed in

Section 3.4. In this Chapter the methods for getting the

metastable and stable configurations which will be

discussed since these are peculiar to molecular statics.

The following section will cover previously used methods;

after that a new method which is computationally orders of

magnitude faster than previous methods will be presented

and all thq methods will be compared using some simple

test cases. Since MS is used exclusively in this work to ..

calculate defect formation, binding, and migration

energies, the techniques necessary to calculate these

quantities will be discussed in Section 4.

4.2 Review of Molecular Statics Methods

Different computational methods can be used to

determine the minimum energy configuration of a system of

atoms. Before discussing these methods, however, it is

useful to first point out the characteristics of the

minimization problem itself. The primary characteristic

is that the energy depends on a large number of variables,

in fact 3N variables where N is the number of atoms in the -

system and the variables are the atom coordinates.

Another characteristic is that we can normally expect that
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the gradient vector, which is the first derivatives of the

the energy with respect to the variables, is available '.

since the derivatives are used to calculate the

interatomic forces. On the other hand, the second

derivatives of the energy with respect to the variables,

mathematically called the hessian matrix and proportional

to the force constant matrix, is not so easy to calculate.

The hessian matrix is not required for MD calculations as

discussed in the previous Chapter. Finally, we note the

system variables are not bound by any mathematical

constraints. Although the periodic boundaries discussed

in Section 3.3 appear to constrain the atoms to the

simulation cell, physically an atom can leave the cell

because one of its images will enter from the opposite

boundary. A constraint in the mathematical sense is

physically equivalent to the wall of an infinite well, and

the periodic boundaries allow us to avoid using this type

of boundary.

Historically, molecular statics methods have been

divided into two categories. The first are methods in

which Newton's equations of motion are solved for the

system of atoms, modified such that energy is removed from

the system as it approaches the minimum energy state.

These methods can be implemented by converting a standard

molecular dynamics code since the code already solves the

IE

equations of motion and will be called "quasidynamic" ,

"1

.- .. °
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methods. The other category whose methods completely

dispense with solving Newton's equations and use general

mathematical minimization techniques to minimize the
53

energy. These are often called "variational" methods .

These methods converge more quickly to the minimum energy,

although some believe that the first category of

techniques will converge more reliably to the global
53

energy minimum and not to some local minimum

Mathematically, however, there is no evidence that methods

in the first category are more reliable those in the

second, and this author believes that in general one

should used the fastest method available.

There are two MS quasidynamic methods which are still

commonly used. (These methods not universally considered

MS methods, but are nevertheless included here since they

are used for the same purposes as the methods discussed

below.) The principle behind the first method is to apply ..'

a frictional or braking force to the atoms which is
33

proportional to their velocities . This will be called

the "frictional" method in this work. The justification

for this method comes from the fact that the total energy,

the sum of the kinetic and potential energies, for the

system is constant. When the potential energy of the

system is lowest, the kinetic energy and hence the atom

velocities are highest and the braking force slows the

system down near this configuration. The second

I. - . . . . . . -:'< " . . . . . . .. . ~ .. . - . . , - -. . .. . .. . .. .. . .. ; . ... .... ..: .i...
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quasidynamic method involves setting the velocity of an

atom to zero whenever the dot product of the velocity and

acceleration of an atom is negative54 This will be

called the "v.a" method here. This technique prevents an

atom from climbing out of a local energy well. The main

advantage of these methods is that they can be implemented

by making relatively trivial modifications to an existing

MD computer code.

Two mathematical methods which used to minimize a

function of many variables are the steepest-descent and

conjugate-gradient methods. These methods, like the 4

quasidynamic methods discussed above, only require the

gradient vector to be calculated. When one has a working

MD computer code, the main disadvantage of the

steepest-descent and conjugate gradient methods is that

one must make more extensive modifications to an existing -

MD code to implement them.

Probably the fastest minimization schemes for
55

unconstrained problems are Newton-like methods . (Note:

Newton-like mathematical minimization methods are not

related to Newton's equations motion.) These techniques

use calculated or approximated first and second

derivatives, i.e. the gradient and the hessian, to perform

the minimization. Let r be the atom positions at the end
m

of the m iteration, and g and (QIbe the corresponding
th m m

gradient and hessian matrix. The next iteration r is
m+ 1

then given by
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-1

r =r -Q ] g (4.1)
m+l m m m

The Newton method has recently be used by Wolf in grain
56

boundary statics calculations . Wolf found that only a

few iterations were required to minimize grain boundary

configuration which would required hundreds of iterations
56

using gradient methods

There are some important drawbacks to this Newton's

method, however. The first is a drawback to the

programmer: it is necessary to calculate to hessian matrix

[Q]. This is not a trivial task, but if it only has to be

programmed once and a great improvement in computer

efficiency can be achieved, then it is probably warranted.

The second drawback is the requirements on computer

memory. [Q] is a 3Nx3N symmetric matrix. Assuming four

bytes per real number and N=500, 4.5 Megabytes of computer

memory are required if one takes advantage of symmetry.

This amount of memory was not available for this work, but

most modern computers (including microcomputers) can be so

equipped and this alone does not make the method

intractable. The third drawback is the most important.

In molecular dynamics and many molecular statics methods,

most of the computer time is spent evaluating the

interatomics forces, i.e., the function evaluation. In

these situations the number of function evaluations

required is a good comparison point since it is
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approximately proportional to the total computer time.

This is not true when using Newton's method on large

systems, however, because the method introduces overhead

which is comparable to the time required to evaluate the

forces. Part of the overhead stems from the calculation

of the hessian matrix [Q]. The interaction of two atoms

generates a 3-component force vector and a 3x3 matrix of

second derivatives. If the evaluation of the potential

has been optimized, the additional time required to

construct the hessian is significant (recall that is also

necessary to calculate the second derivative of the

potential). The other source of the overhead is the

solution of the set of linear equations for r ([Q] is
m+1

not actually inverted). The time required to solve these
3

equations is proportional to N and hence is important for
57

large N .

4.3 A New Method

A special implementation of a method due to Fletcher
58

and Powell allows us to avoid the drawbacks of Newton's

method. What is avoided in this implementation is: 1)

storage of a 3Nx3N matrix, 2) direct calculation of the

hessian, and 3) solution of a set of 3N linear equations.

We retain, however, the excellent convergence properties ."

of Newton-like methods. The standard implementation of V

Fletcher's method is shown in the algorithm in Figure 4-1.

" I,

. . .-

-. . . . . .. . .. 2..*~.N X%*. *..
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The key to the method is the calculation of a matrix H
m+l

-1

which converges to [Q] , the inverse of the hessian.

Instead of calculating (Q] directly and solving a set of

equations for r , we update H and do a matrix
m+l m

multiplication.

The algorithm in Figure 4-1 overcomes two of the

three drawbacks of the Newton method because the hessian

does not have to be directly calculated and a system 3N

linear equations does not have to be solved.

Unfortunately, we still have to store a 3Nx3N/2 matrix

which was beyond the capabilities of the computers used

for this work. The solution to this problem is found by

noting that although A and B are 3Nx3N matrices, all of
m m

the information they contain is also contained in the

3N-vectors d and z and two scalars a and b such that
m m m m

T
d d
m m

A = (4.2)
m a

m

T
z z
mm

B (4.3)
m b

where m

* ".

* ," . * * .* * °* a
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Figure 4-1: Conventional Algorithm for
Fletcher's Method

The portions of the algorithm which are
replaced in the modified algorithm in Figure 4-2
are enclosed in the hashed rectangles (from

Acton 
59

i=O
xo is given a priori, hencefo, go
Ho-= I (the unit matrix)

-- s, -H, g, (a direction, always downhill,-ad'aprOx imte -l"
,' the distance to the minimum along that direc.
*-------tion .------------

C: Execute a subroutine that minimizes f in the direction - that
is, find the (positive) value of A that minimizes f(x, + 4s) and
call that critical value of A by the name a,. The nature of this
subroutine is irrelevant to the principal iteration, although for
efficient operation a somewhat sophisticated procedure is
desirable. We have given one earlier.

C:d, = misi (the incremental distance we will
move along si)

C:x,+= xi + di (our new position near the mini-
mum along si)

C: :fIx+ 1), 19 +, I(note that diT.gi+ I = 0, except for
rounding errors)

C:yi = g1+1 - 91
":A d - --d - e iinmerator is the backward, or

A, d matrix, product of two vectors;W the denominator is an ordinary dot I

product)
!i B = (Hy)(Hyi)T (again, the numerator is the matrix

I yr Hjy product of two vectors; the de-
I nominator is a quadratic form, a

scalar)
C:¥+ a= H, + A, - B, (it can be proved that H, having

started positive definite, will always
-- - - - -remain t)ositive definite)

I i < n? F-i_ Exit, too many iterations! l

yes

i = + I Test for smallness ofd, and s, small! Stopfat minimum)
no[
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z = H y (4.4)
m m m

T
a = d y (4.5)
m m i

T
b =y H y (4.6)

m m m m

We can rewrite H as
m

rn-1
H I + (A B) (4.7)
m j=0 j j

Two key observations can be made at this point. The first

is that we do not have to store H directly, but instead we

can store the sequence of vectors and scalars d , z , a ,
m m m

and b , since they contain all of the information in A
m m

and B . As long as m < 3N/4, we will be using less
m

storage than the conventional implementation. It would

appear that the price of the reduced memory requirement is

a sacrifice in efficiency since to multiply the 3Nx3N

matrix H times a vector, we have to actually multiply the
m

vector by 2m 3Nx3N matrices. This leads to the second

observation, where we rewrite the multiplication of the

vector w by A as
m
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T
d d
m m

A w= w (4.8)
m a

T
[d [ Id w}/a } } (4.9)
m m m

where the braces indicate the order of evaluation. Noting

T
that d w is a scalar, we have reduced the matrix

m
multiplication of w by a 3Nx3N matrix to the evaluation of

the dot product of two 3N vectors and the multiplication

of a 3N vector by a scalar. The net result is that this

implementation is actually faster than the conventional

method for m < 3N/2, which is definitely the case for the

molecular statics problems in this work.

In Figure 4-2 the revised algorithm is presented. It

was found that this method converged in about ten to a

hundred iterations, such that m << 3N/4 for realistic N.

4.4 Comparisons of Methods

Some of the MS methods discussed in the previous

sections were implemented to compare their ability to

determine static configurations. The frictional and v.a

methods were implemented since many workers are familiar

with them. The steepest-descent method was also

-' :- -'- . a'-.,. ,. . a .'. ,; & : . " -" . a a . .. • -_- . . -,_ .. . -. -- -. - . . .: -. •
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Figure 4-2: Modified Algorithm for Fletcher's Method

xo is given a priori, hencefo, go
HO I (the unit matrix)

T T'
d dq9 zg.

j-0-

C: Executea subroutine that minimizesf in the direction s, -that
is, find the (positive) value of)A that minimizes f(xj + ).s1) and
call that critical value or). by the name a,. The nature of this
subroutine is irrelevant to the principal iteration, although for
eflicient operation a somewhat sophisticated procedure is
desirable. We have given one earlier.

CAd, =(the incremental distance we will
move along s,)

C:x, x, + d, (our new position near the mini-
mum along s,)

C~f(X1+ 0, 1 + I(note that d,rg C, O, except for
rounding errors)

C:y, = g+1 - 9

Tj T

C: Z y + 1

T
C:a d y

C:b - yZ

Is i < n? no Exit, too many iterations!

yyes

j + I [Test for smallness of =d and 9, sal Stpat minimum
no all

N"

_16'
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implemented; the conjugate gradient method did not appear

to converge significantly faster in some tests, although

those results are not given here. Because of memory

limitations, Newton' s method could not be implemented for

this test. Finally, the Fletcher-Powell method as

discussed in the previous section was implemented.

Three test cases were selected to compare the

methods. Case I is the minimization of a single vacancy

system. A single atom was removed from a 108 atom fcc

cube, and this was used as the initial configuration. In

Case II the methods were used to minimize a system

containing an 19-vacancy platelet. The initial

configuration was created by removing 19 atoms forming a

hexagon from a (111) plane of a 108 atom fcc cube. Since

more atoms are removed in the Case II than Case I, one

expects that more atoms will be displaced and the

displacements will be larger. Case III is a defect

migration calculation for a single vacancy. In this Case

the system is constrained above the minimum energy

configuration which makes minimization more difficult than

in Cases I and II (this method is discussed in more detail

in the following section). The impetus to find a faster

MS technique was because the migration calculations took

so long using existing methods.

The results of the comparisons are shown in Figures

4-3, 4-4 and 4-5. it is evident that the both the
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steepest descent and Fletcher-Powell methods are "

considerably faster than the frictional and v.a techniques

in Figure 4-3 and 4-4. The steepest-descent method is

only about a factor of two slower in these two Cases. In

the migration calculation in Case III, it is apparent the

Fletcher-Powell method is far and away the best technique.

It converges an order of magnitude faster than the

steepest-descent method, and within 500 steps the

frictional and v.a methods have converged to about four

significant figures.

4.5 Defect Energy Calculations

4.5.1 Formation Energy

The defect quantities calculated in this work are the

formation, migration, and binding energies of defect

clusters. In this section we discuss the use of molecular

statics to calculate these defect properties. The

calculation of the formation and binding energy of a

defect requires the use of molecular statics in a

straightforward manner to determine the metastable

configurations and energies of a defect, and then the

proper manipulation of the energies to get the formation

and binding energies. To calculate the migration energy,

however, one must make some minor modifications to a

standard molecular statics code.

I|

. . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
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The formation energy of a defect is the difference in

energy between a system S containing the defect and an

otherwise identical system S* which does not. The .

formation energy of almost any defect can be defined for a

system S*, such as an interstitial, vacancy, defect

cluster, etc. S* is normally selected to be the ideal or

perfect lattice, and the formation energy is the energy

required to introduce a defect into a perfect lattice.

Generally speaking, S* does not have to be a perfect

lattice; for example, S* can be a system containing a

grain boundary and the "defect" could be a vacancy. In

this instance the formation energy is the energy required

to introduce a vacancy near a grain-boundary. In the

context of this work, S* will always be the perfect

lattice and the defects will be vacancies and vacancy

clusters.

To calculate the formation energy of a vacancy using

molecular statics, it is necessary to calculate the

enthalpies of both a system S containing a vacancy and the

corresponding perfect lattice system S*. S and S* should

both contain the same number of atoms N'. Let H and H* be

the enthalpies of S and S*. The formation energy is then

f
E =H H* (4.10)
vl

Unfortunately, it is not possible to calculate H* directly
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using molecular statics. To simulate a perfect FCC

lattice, the number of atoms N = 4ijk, where i, j, and k

are positive integers, and to simulate a lattice with a

vacancy, N' = 4ijk - 1. In defect simulations one

normally uses i=j=k, which further limits the choice of N

and N'. The result is that we cannot directly simulate

both S and S* because there are not corresponding values

of N and N'. The solution to this difficulty is to take

advantage of the equivalence of each atom in the perfect

lattice. Assuming the atoms are indistiguishable, the

neighborhood of each atom, i.e., the number and positions

of surrounding atoms, is identical. For this reason the

total enthalpy of a perfect lattice is proportional to the

number of atoms in the system N. If H is the enthalpy of
0

*i perfect lattice containing N atoms, and. H* is the

enthalpy of a perfect lattice with N' atoms, then

N'

H* = - H ((.4)
N 0

and

f N'
E = H -- H (4.12)
vl N 0

In practice, the perfect lattice system S consists of N
0

atoms and the system S containing the vacancy contains

N' = N-1 atoms. N will be selected such that N = 4ijk.

Thus,
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f N-i
E H -- H (4.13)
vi N 0

S is the system S with a single atom removed, but both
0

systems have the same volume.

It is possible to rewrite (4.13) in a form more

amenable for molecular statics calculations. Let U, P,

and V be the internal energy, pressure, and volume of S,

and U , P , and V be the corresponding values for S
0 0 0 0

Then H =U + PV and H U +P V. Assuming P =P ,we
0 0 0 0 0

get

f N-i N-i
E U U P V - V
vl N 0 0 N 0

N-I
= U - - U + <Virial> (4.14)

N 0

where

r N-i1
<Virial> = P V - -V (4.15)

N 0

As noted above, V = V . The pressure is calculated from
0

du(r
i ij

P Z r ,<i<N (4.16)
0 6V i j'i ij dr

0
Substituting into (4.15),

a--
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IqI
du(ir

4virial> r-

6N i ji ij dr

i< i<N (4.17)

As noted above, every atom in the perfect lattice is

equivalent. This allows us to rewrite the sum over i as

du(r

j'i ij dr

du(r

N r , 1 < i < N (4.18)
j~il lj dr

where we have arbitrarily chosen i = 1 on the right hand

side. The virial term then becomes

du(r
1 lj

<virial> =- L r (4.19)
6 jP11 1j dr

The quantity <virial> is thus the virial contribution of a '4

single atom in the perfect lattice. For any given lattice

constant and potential cutoff radius we only have to

calculate <virial> once since it is independent of N.

Equation (4.14) can be generalized to calculate the
f

formation energy E of a cluster of n vacancies to get
Vn .4

4..

f N-n
E f U U + n <Virial> (4.20)

Vn n N 0

F

.- - ,. . -." . . . " .' , ....-*- , .. " "... ... .. -.. . . . . . . .. - .. • ". -. -, " ., .. ", , , ..-. .'. .. ', . ., ... . .
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where U is the internal energy of a system containing an
n

n-vacancy cluster.

Molecular statics is used to calculate the internal

energy values required in Equation (4.20). We normally

initialize the atoms to positions near the desired

configuration and use the molecular statics code to

minimize the configurational internal energy and determine

the positions of the atoms in a stable or metastable

state. As noted above, we only have to calculate the

perfect lattice energy U and the virial term <virial>
0

once for a given lattice constant and potential, where

potentials are distinguished between different materials,

cutoff radii, etc. (Recall U scales linearly with the
0

number of atoms N, and that <virial> is independent of N).

The internal energy U of the lattice with the defect will

be N-dependent to some extent and will obviously depend on

the choice of potential.

4.5.2 Binding Energy

b
The binding energy E of a cluster of n defects is

Vn
f

the difference in formation energies E of the cluster
Vn

and of n isolated defects,
,'

b f f
E =nE -E (4.21)
Vn Vi Vn

Substituting (4.20) into (4.21),

.. .. .. -. . . . , . . . ..... o . . , .
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b
E = n(U -U) - (U - U) (4.22)
Vn 1 0 n 0

where the virial term cancels.

Molecular statics is used to calculate the binding

energy in the same way it is used to calculate the

formation energy, and the same comments apply in this

case. Note that it is not necessary to calculate the

virial term <virial> to calculate the binding energy.

4.5.3 Migration Energy

In a static lattice, the migration energy of a defect

is defined as the energy barrier that the defect must

overcome to move from one position or configuration to

another. In this section we will discuss a modification

to the molecular statics method which allows one to

calculate the migration energies of defects.

Let us look at a system of N atoms with coordinates

r , where i = l...N, and configurational internal energyi
U(r ). Let site A be the current position of a vacancy,i
and site B be one neighboring sites to which the vacancy

A B
can jump. Coordinates r and r are the atomic

i i A A
coordinates corresponding sites A and B, and U = U(r )i

B B
and U U(r ). In Figure 4-6 a single vacancy is shown

i
at site A in a two dimensional square lattice. For the

.. .--
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vacancy to jump to site B, atom 1 must jump in the reverse

direction as shown. There are an infinite number of ways

this jump can be accomplished. No matter what path is

taken, however, atom 1 must cross a line drawn

perpendicular to the jump direction. Let us define the

position of this line by a reaction coordinate r, which in

this simple case will be the y-coordinate of atom 1 when

it is on the line,

O(r ) = r (4.23)
i l,y

where r is the position of atom 1 and r = (r , r
1 1 l,x l,y

Every trajectory r (t) which goes from A to B must pass
i

through a given '. The energy at the crossing is

U(r I (r ) = Q). Let us define U(Pt) as the minimum of
i i

U(r I t(r.) = v), i.e.,i i

U(v) = min U(r I (r) = v) (4.24)

i i

U(v) is thus the lowest possible energy at the crossing

0(r.)= ,i. The jumping atom must pass through all of the
i

LY values between -1 and 1 to make a successful jump. Even

if an atom follows the lowest energy path (defined when

U(r ) = U((r.)) ), it will have to pass through the
i 1

maximum of U(). We now define the migration energy E
vi

by

. . .

.

z :2 _: " " \ "- . " " " " a. """ " ' ': - : '-'' -''. .i" '." " ". -.



U-

-90-

m A
E =max U(e) -U (4.25)
Vl

Before developing the method for an fcc lattice, we

need to make some revisions in our definition of the

reaction coordinate 'I.. Effectively, w serves as a

constraint on the system by limiting the possible

configurations. (Note: this is a constraint in the

physical sense because we are forcing the system to be in

a higher energy state; this is not what is a considered a

constraint in the mathematical sense.) Equations (4.23)

and (4.24) constrain the system by forcing atom 1 to have

a specific absolute y coordinate. In molecular statics

with periodic boundaries, the system can be translated in

any direction without affecting the energy of the system

because the energies are all calculated from relative

distances between atoms. If a single atom is constrained

to a specific absolute location, the whole lattice will

slowly drift to a minimum energy which is independent of

the constraint (i.e., there is not a one-to-one

correspondence between the reaction coordinate and the

system energy). The solution to this problem is to define

a reaction coordinate which is anchored to the atoms in

the lattice but which has a similar physical meaning. A

reasonable choice in the two dimensional case is

* . . *.*.4~-'.*............

* * 4 * * .* . . . -. . , --.---
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Figure 4-6: Vacancy Jump in a Square Lattice
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r r +r +r2,y 3,y 4,y 5,y
(r r - (4.26)
i l,y 4

As long as atoms 2 through 5 stay in reasonable positions,

the reaction coordinate r is well-defined, is anchored to

the lattice, and has the same physical meaning as Equation

(4.23).

Now that we have looked at the basic ideas of the

technique in two dimensions, let us develop the method for

an fcc lattice and look at the details of computer

implementation. We will first define the reaction

coordinate vL for the three dimensional case. In Figure

4-7 atom I must move through the "gate" of atoms 2 through

5 to make a successful jump. As before we wish to define

a reaction coordinate r)which in this case refers to a

plane instead of a line.We can define a reaction

coordinate Q to describe the position of atom 1 during the

j ump,

r +r +r +r
2 3 4 5

viL(r ) = u. r - (4.27)
i 1 4

where u = [-2/2,47/2, 0] and S is a scaling factor. We

set (4 a/4) , where a is the lattice constant, so

that -1 < rL <1.

Now let us look at the details of the implementation

- * S
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Figure 4-7: Migration Path for a Vacancy Jump _
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of the method. The basic problem is to calculate U(VL) as

given by Equation (4.24), Note that an energy minimization

is required to determine U() from Equation (4.24).

Molecular statics is ideally suited for this, provided we

can find a way to enforce the constraint v(r.) = r. The
I

most natural way to add the constraint is to add an extra

term to the Lagrangian for the system. For the '-

unconstrained system, the Lagrangian L is

L =T -U (4.28)

where T and U are the kinetic and potential energies,

respectively. Lagrange's equations are then

d 9L 9L
-0- = (4.29)
dt ap aq

J J ??1

d PT lau
- - + - = 0 (4.30)
dt ap aq

J J -.
where q is a coordinate and p = dq /dt. The constrained

Lagrangian LC is the same as Equation (4.28) with an extra

term,

LC = T - (U + UC) (4.31)

where UC = UC(j). Lagrange's equations for LC are

d 9T aU OUC
+ - + - = 0 (4.32)

dt ap aq 2q l

j j j

. . . ..
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where the first two terms are the same as in (4.30), and

we assume that UC is not a function of p.. The third term

can be expanded

OUC dUC (4.33)
2q. d rL aq

Newton's equations for the constrained system are then

dv
km 9U dUC 9 I-

m - = ---- (4.34)dt 2r d ML 9)r

km km
where q = r , p = v , k is the atom number, and m is

j km j km
the coordinate (x, y, or z).

We now need to specify UC(,L). The effect of UC(q) on

the system should be to artificially increase the

potential energy when the system deviates from the desired

constrained configuration. In this case, UC() should

increase when k(r ) deviates from the desired value of

Another feature of UC(v) imposed by limitations of

numerical integrating schemes is that it should not

contain discontinuities. A simple form for UC() which

has these qualities is

2
UC(f = [ - (4.35)

where fi is the desired value of q(r.) and ] is a constant. ".

Figure 4-8 shows the effect of adding UC(ft) defined by

(4.35) to the unconstrained potential energy U(). The

a"'°
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energy minimum is now near the desired value of , and the

molecular statics code will converge to this

configuration. Substituting into (4.33) and letting r =

kmq,

a uc q . --
2- = 2 ,ir ) - ] . (4.36)

. r 1r
km km

and from (4.27)

/-j k=l..

m

= - j k = 2...5 (4.37)
ar 4 m
km

0 k > 5

th L
where j is the m component of j.

m
The simplicity of the method is shown in Equation

(4.37). The only atoms that contribute to the constraint

implementation are those specifically included in the

definition of flu' and only these atoms are directly

affected. Also note that we can implement the constraint

technique independently of the calculation of the

interatomic forces, which means that it can be

superimposed on those calculations. The molecular statics

code runs in basically the same way as when it is

unconstrained. The difference is that we add UC(A) from

Equation (4.35) to the configurational internal (or total

potential) energy, and we add contributions to the forces

|I

%. . . ° ° ° o° . . -. ° - .. - - , - •. °°, , ° . . -. . . . . . . • - .. . . o-..°

• . ..'.',.'.;-:-.,- -.'.'.'- -'.,." ...- ' -. -...-.- ... -, -" .'''. .'.", .'''.". '" .' -." "." " € ""'. ." ", ." "."



-97-

Figure 4-8: Effect of Constraint on the
Potential Energy

U() is the unconstrained potential energy;
UC(A) is the additional energy added from the
constraint. Note how the minimum of U(YL)+UC(1) is
now near the minimum of UC(L).
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given by Equations (4.36) and (4.37). The effect of these

additions is to constrain the system near some desired

value of

i-1";

I-

r--

Ii-1

P
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Chapter 5

Bulk Properties

5.1 Introduction

The main thrust of this work is the calculation of

the properties of vacancy defects in copper. As was

pointed out in Chapter 1, many defect properties have not

been experimentally determined and hence the computational

results are difficult to verify. The molecular statics

(MS) and molecular dynamics (MD) methods are powerful

P enough, however, to allow one to calculate many different

physical properties using the same interatomic potential.

The purpose of the work discussed in this Chapter is to

calculate the thermodynamic and vibrational properties ofN the copper potential using MD techniques and compare them

with experimental results. While correspondence between

calculat ions and experiment in one property does not

guarantee the same in another, this way of testing a given

potential is just about the only way of determining its

range of applicability.

To make the test of the Dagens' potential even more

complete, similar calculations are also performed using
29

the modified Morse potential discussed in Section 2.2.
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By repeating the calculations with a different potential,

one can better evaluate the sensitivity of the calculated

property to detailed features of the potential. As is

well-known, there are not many materials for which a _

single potential is recommended for all properties, and as

was discussed in Chapter 2, many interatomic potentials

have been used for copper. s
Pk-

5.2 Thermodynamic Properties

The thermodynamic properties calculated in this

Chapter are the temperature, volume, pressure, total

energy and enthalpy. The behavior of these properties

with temperature allow us to estimate the specific heat

and linear thermal expansion coefficient. To obtain some

information on the structure. of the system, the order

parameter and mean-square displacement are also

calculated. Melting is a first order transition, and

properties such as the total energy and enthalpy are

discontinuous atthe melting point. This transition can

be determined from a series of runs, and combined with

information given by the order parameter, mean-squareJ

.displacement, and the radial distribution function, can be

used to estimate the melting point of the system. The

results of these calculations are presented in this

Section.

The formulas and methodology for the calculation of

7-.7
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thermodynamics properties were discussed in Chapter 3. It

was noted that the all of the properties calculated in

this work are functions of positions and velocities. From '

a single configuration of the system, i.e., a single set

of positions r and velocities v of all the atoms, a single

or instantaneous value of some property A(r, v) can be

calculated. In a constant-volume or microcanonical

simulation, however, all of the thermodynamic properties

fluctuate except for the total energy E, the volume V, and

the number of atoms N. If the system remains in a single

phase, the properties fluctuate about an average value

<A>, where <A> is the average of A(r, v) over all time.

As one might expect, the value of A(r, v) between one time

step and the next are correlated (because of limitations

of the integrator, atoms can only move a short distance

during a step). Consequently, thousands of time steps are

required to get a reliable estimate of <A>.

In Chapter 2 it was noted that the structure-

independent part of Dagens' noble metal potential is very

difficult to calculate and was not available for this

work. Since the simulation pressure depends on the

structure-independent contribution, only a limited number

of derived thermodynamic properties could be calculated.

Furthermore, it was impossible to calculate the properties

at ambient pressure, where experimental results are

usually quoted. To attempt a comparison with experimental
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data, thermodynamic properties were calculated at three

specific volumes using conventional (constant-volume)

molecular dynamics. The simulation volumes V , V , and V
0 s 1

correspond, respectively, to the density of copper at

ambient pressure and temperature (1 atmosphere and 298K);

the density of solid copper at melting at ambient

pressure; and the density of liquid copper at melting

under ambient pressure. This is summarized in Table 5-1,

in which T = 1357K is the melting temperature of copper.
m

At these volumes one can calculate the melting point of

the potential and make some tentative comparisons with

real copper, assuming the thermal expansion of the

computer and real copper are identical. The

structure-dependent part of Dagens' potential, which is

the part of the potential used in MD and MS, is also

volume dependent. Even if the structure-independent part

of the potential was available, strictly speaking a

different interatomic potential must be used at each

simulation volume. Only the single interatomic potential
1

given by Lam and specified by equation (2.7) was

available for this work and was used in all calculations.

It is not possible to say how sensitive the form of the

interatomic potential is to the total volume without

actually deriving the potential at different volumes.

The modified Morse potential used for the parallel

property calculations is not volume dependent nor does it

,7,
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Volume of Corresponding State in
3

Unit Cell [A) Real Copper

V 47.242 T = 298K, P = 1 atm
0 I

V 50.489 T = T , P = 1 atm, solid phase
s m

V 53.115 T = T , P = 1 atm, liquid phase
1 m

Table 5-1: Simulation Volumes Used in
Property Calculations with Dagens'Copper Potential

have a structure-independent component. Consequently, it

is possible to calculate all of thermodynamic properties

of the potential including the pressure. To take

advantage of this fact, the flexible border Parrinello-

Rahman method was used for the property calculations. The

system pressure was set to 0 GPa (effectively, 1

atmosphere). Since experimental properties are normally

calculated at this pressure, direct comparisons of all

properties could be made.

In all of the thermodynamic property calculations,

256 atoms were used. In the opinion of the author, this

is probably a sufficient number of atoms based on previous

experience with calculations done for argon using the

Lennard-Jones 6-12 potential. The cutoff radius for

Dagens' potential was set at 4.9241 A, which is shorter

that the cutoff radius used the the defect calculations

reported in Chapters 6 and 7. This cutoff is equivalent

to 1.4a, where a is the lattice constant. While the
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author believes that the results of this work would not be

significantly different it a longer cutoff radius was

used, this possibility was not extensively tested. As

noted above, thousands of time steps are necessary to _

calculate reliable averages of the fluctuating properties.

Most of the properties reported in the following sections

were averaged over 4000 to 6000 time steps; in some cases,

longer runs were made when it was suspected that the

system was in a metastable state. This point will be

addressed in more detail below.

The results of the thermodynamic and related property

calculations are presented in Tables 5-2 through 5-5. All

of the thermodynamic property values shown are time

averages except for the total energy E and unit cell

volume V for Dagens' potential and the total enthalpy H

for the modified Morse potential, which are constants of -

motion in these simulations. The numbers of time steps

over which properties and their averages were calculated

are given in Table 5-3 and 5-5 for each run. In most

cases the averages were calculated over 4000 steps. SomeK the properties are plotted in Figures 5-1 through 5-7 and

will be discussed below. The melting transition is

* indicated in many of the Figures; the discussion of

melting will follow the presentation of the results.

The mean-square displacements (MSD) for the
-7"

pseudopotential and the modified Morse potentials in the

7:-~S -,: _
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Run <T> <P> <U> <V><E

[K] (KJ/Kg] (KJ/Kg] [A I [KJ/Kg]

1 0.0 22.7 494. 47.242 493.94
2 280.2 23.6 550. 47.242 604.95
3 285.8 23.7 551. 47.242 606.91
4 921.5 26.1 683. 47.242 863.77
5 1402.2 28.2 790. 47.242 1065.80I
6 1904.6 30.6 917. 47.242 1291.16
7 2187.5 32.6 1032. 47.242 1460.93
8 1917.3 33.5 1085. 47.242 1461.04
9 2518.5 36.5 1222. 47.242 1716.37

10 2767.9 37.8 1284. 47.242 1826.88

11 449.9 15.9 446. 50.489 534.27
12 895.6 17.8 540. 50.489 716.06
13 1459.2 20.5 672. 50.489 958.00
14 1576.2 21.2 705. 50.489 1015.18
15 1585.0 21.3 704. 50.489 1015.20I
16 1775.1 22.4 758. 50.489 1106.21
17 1827.4 24.9 885. 50.489 1243.21

a17 1758.2 25.3 898. 50.489 1243.21
18 2101.5 27.2 982. 50.489 1394.43
19 2558.1 29.4 1079. 50.489 1581.44

20 773.3 12.2 445. 53.115 598.77
21 931.3 13.0 482. 53.115 665.11
22 1193.4 14.5 544. 53.115 778.59
23 1219.3 14.7 551. 53.115 790.61
24 1294.6 15.0 567. 53.115 821.33
25 1357.1 18.8 728. 53.115 994.27
26 1952.8 22.1 869. 53.115 1252.35
27 2460.3 24.5 962. 53.115 1444.87

Table 5-2: Thermodynamic Properties of
Dagens' Potential (Part I)

solid phase are plotted in Figures 5-1 and 5-2. The MSD

is calculated using equation (3.19). It is evident from

Figure 5-1 and 5-2 that the MSD increases with increasing

temperature. This can be explained by imagining that each
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Run <T> Order MSD Phase Steps
2

SCK] (A ]

1 0.0 1.00 0.0 s I
2 280.2 0.91 0.07 s 2000
3 285.8 0.91 0.05 s 4000
4 921.5 0.75 0.18 s 4000
5 1402.2 0.62 0.24 s 4000
6 1904.6 0.46 0.44 s 4000 P
7 2187.5 0.27 1.07 s->l 4000
8 1917.3 0.01 13.97 1 6000
9 2518.5 0.00 9.27 1 2000

10 2767.9 0.00 8.90 1 2000

11 449.9 0.88 0.07 S 4000
12 895.6 0.76 0.14 s 4000
13 1459.2 0.57 0.35 s 4000
14 1576.2 0.50 0.34 s 4000
15 1585.0 0.53 0.38 s 4000
16 1775.1 0.45 0.42 s 4000 .
17 1827.4 0.09 6.88 s->l 4000

a17 1758.2 0.00 1 1000
18 2101.5 0.00 10.67 1 3000
19 2558.1 0.00 16.78 1 3000

20 773.3 0.75 0.16 s 4000
21 931.3 0.70 0.19 s 4000
22 1193.4 0.61 0.32 s 4000
23 1219.3 0.62 0.30 s 4000
24 1294.6 0.60 0.31 s 4000
25 1357.1 0.01 6.78 1 4000
26 1952.8 0.00 10.90 1 3000
27 2460.3 0.00 16.99 1 3000

Table 5-3: Thermodynamic Properties of
5agens' Potential (Part II)

atom is inside of a local energy well whose minimum is at

the perfect lattice site. As the temperature increases,

the atom is able to climb further up the sides of the well

and hence the average displacement of the atom also

;? ' ,"-.,2".'-".". 2'i% '-". . . ..,"'- -.- "'.. .... '.<i *2- * , ... . .. . . - -. -:, - "a
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Run <T> <P> <U> <V> <H>

[K] [GPa] [KJ/Kg] [A ] [KJ/Kg]

28 0.0 0.0 -1962. 46.8 -1962.10
29 283.7 0.0 -1902. 47.5 -1846.18
30 295.2 0.1 -1900. 47.5 -1841.15
31 302.1 0.0 -1899. 47.1 -1838.74
32 921.5 0.1 -1741. 49.6 -1557.00
33 1180.6 0.0 -1654. 51.0 -1417.78
34 1329.3 0.0 -1600. 51.9 -1335.93
35 1401.9 0.0 -1563. 52.6 -1284.82
36 1416.0 0.0 -1566. 52.5 -1284.76
37 1226.2 0.0 -1444. 54.9 -1172.84
38 1359.8 0.0 -1415. 55.7 -1172.7839 1512.5 0.0 -1282. 59.4 -982.54 RMq
40 1766.0 0.1 -1147. 65.0 -797.80

Table 5-4: Thermodynamic Properties of
ModTfTed Morse Potential (Part I)

increases. The MSD for Dagens' potential shown in Figure

5-1 is calculated at three different system volumes. Note

that as the system volume increases from V to V , the MSD
0 1

also increases at constant temperature. Dagens' potential

is repulsive at these volumes (note that the system

pressure is always positive), and hence the local

potential energy well of an atom becomes shallower as the

volume increases which allows atoms to be displaced

further at larger volumes. It has been estimated that

when the the root-mean-square displacement exceeds 15-20%

of the nearest neighbor distance, the solid phase is

unstable and a phase change to the liquid phase should

p.

@ ....... ... . .. .. .. ....g . .. . ...... .-. ' .*.. * . .... % . . ... .. . . .. ..-. . '.*, )..
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Run <T> Order MSD Phase Steps

(K] [A 2

28 0.0 1.00 0.00 s 1 -p

29 283.7 0.94 0.06 s 4000
30 295.2 0.94 0.06 s 3000
31 302.1 0.93 0.07 s 2000
32 921.5 0.77 0.27 s 3000
33 1180.6 0.67 0.42 s 5000
34 1329.3 0.60 0.49 s 4000
35 1401.9 0.50 0.75 s 1000
36 1416.0 0.56 0.74 s 6000
37 1226.2 0.01 10.05 1 4000 I
38 1359.8 0.13 6.58 s->1 5000
39 1512.5 0.00 15.85 1 3000
40 1766.0 0.00 23.47 1 3000

Table 5-5: Thermodynamic Properties of
ModifTed Morse Potential (Part II)

60
occur The MSD corresponding to the root-mean-square

displacement of 20% of the nearest neighbor distance is

indicated in Figures 5-1 and 5-2, and in all cases the

calculated MSD exceeded this value without a phase change

occurring. It is possible that the simulation run times

were not sufficiently long for the phase change to occur,

although it is noted that the particularly high value of

0.74 A in Figure 5-2 was averaged over 7000 time steps.

The problems associated with determining the melting point

will be discussed in more detail below.

The calculated total energy for Dagens' potential is

A -.-. .~ M ..8 A A A - ~ . . A .M.A• A .
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Figure 5-1: MSD vs Temperature for Dagens' Potential

The arrow indicates a root-mean square
displacement of the 20% of the nearest neighbor
distance.
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Figure 5-2: MSD vs Temperature for the ModifiedI
Morse Potential

The dashed line indicates a root-mean square
displacement of 20% of the nearest neighbor
distance.
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plotted in Figure 5-3. The total energy E is the sum of

the kinetic and potential energies of the system and is

calculated using equations (3.11) through (3.13). As

noted above, three different system volumes were used for

the thermodynamic property calculations using Dagens'

potential. As the volume of the system is increased at

constant temperature, the total energy of the system

decreases. This is caused by the repulsive nature of the

potential at these densities, which causes the interaction

energy between atoms to decrease as they are moved apart

from one another. Figure 5-3 also indicates that the

total energy increases with increasing temperature for a

fixed volume. This is caused not only by the increase in

the kinetic energy of the system, which is proportional to V

the temperature as shown in equation (3.15), but also by

the fact that the atoms on average are further displaced

from the ideal lattice sites as the temperature increases

as shown in Figure 5-1 and 5-2. Consequently, the total

energy increases as the temperature increases. At some

point on each curve, a vertical bar indicates that a

transition occurs and the total energy increases abruptly.

Thi3 point indicates the melting point at the given

volumes, which will be discussed in more detail below. It

is also noted that the two data points, marked A and B,

are slightly supercooled, although the difference in ...

temperatures between these points and their corresponding
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melting points are within the uncertainties of the melting

temperatures.

The calculated enthalpy for the modified Morse

potential is plotted in Figure 5-4. The enthalpy is

calculated using equation (3.17). All of the modified

Morse thermodynamic calculations were performed at zero

pressure. As in Figure 5-3, the enthalpy also increases

with increasing temperature for the same reasons.

Assuming that the indicated melting point of the potential

is correct, the point marked C is definitely supercooled.

This point is Run 37 in Tables 5-4 and 5-5, and the

properties were calculated over 4000 time steps.

The pressure, calculated using equation (3.16), is b"-

plotted for Dagens' potential in Figure 5-5. It is

apparent from Figure 5-5 that a large external pressure is ,-"

necessary to maintain the system at the given volumes.

The reason the pressure is so large is that the cohesive

energy provided by the electrons has not been included in

the pressure calculations as discussed in Section 3.3.

Figure 5-5 indicates that the calculated pressure

increases with increasing temperature. This behavior is

caused by the anharmonicity of the interatomic potential

as indicated in Figure 2-1. As noted above, as the

temperature is increased, the displacement of the atoms

from their perfect lattice sites also increases. In

Figure 2-1, we note that the potential energy increases
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Figure 5-3: Total Energy vs Temperature for the
Pseudopotent jal
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Figure 5-4: En thalpy vs Temperature for the modified
Morse Potential
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dramatically with decreasing interatomic radius compared

to the change as the interatomic radius increases. At

greater average displacements, the average position of an

atom will tend to be at larger interatomic radii.

Consequently, to maintain the same average position and

the same volume, an external pressure must be applied. As

with the total energy, the pressure also experiences a

first order transition at melting indicated by the Ok.

vertical bars.

The specific volumes of the modified Morse potential

simulations versus temperature are plotted in Figure 5-6.

The behavior of the volume in a constant pressure

simulation is qualitatively similar to the behavior of the

pressure in a constant volume simulation. The volume of

the system increases with increasing temperature,

indicating that the potential is anharmonic. The specific

volume also increases at the melting point, indicating

that the system is less dense as a liquid.

In Figure 5-7 the order parameter defined by equation

(3.20) is plotted for Dagens' potential. The order

parameter can be used to determine the order of a state

and thus whether or not the system is a solid or liquid.

The parameter is designed to range between 0 and 1

inclusive, such that a 1 refers to a perfectly ordered

system (a cold fcc lattice, for example), and 0 refers to

a totally disordered system. In Figure 5-7 the parameter
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Figure 5-5: Pressure vs Temperature for
Dagens' Potential
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Figure 5-6: Volume vs Temperature for the Modified
Morse Potential
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is plotted for the volume V for the pseudopotential. It
0

is interesting to note that in the simulations at the

largest volume, V , the order parameter only decreases to1

0.6 before melting, whereas it decreases to 0.45 at

volumes V and V
s 0

Derived thermodynamic properties can be determined

from the thermodynamic data in Tables 5-2 and 5-4. The

following properties are calculated as derivatives and

differences of the properties in these Tables:

-Specific heat at constant volume:

dEj
c (5.1)
V dT constant V

- Specific heat at constant pressure:

dH-c -- (5.2) -.
P dT constant P

- Bulk modulus:

dP
B = -V - (5.3)

dV

- Bulk thermal expansion coefficient:

dV

T dT

The latent heat of melting &H and AE ,are given by the
m m A

differences in the enthalpy and the total energy,
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Figure 5-7: Order Parameter vs Temperature for
Dagens' Potential
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respectively, of the liquid and solid states at the
!V

melting temperature. The volume change on melting is

given by the change in volume during the melting

transition, at a constant temperature. The results of the

calculations of these properties are shown in Table 5-6.

It is noted that the selection of the system volumes for

the Dagens' potential property calculations already

assumes that the thermal expansion properties are correct,

and hence the thermal expansion coefficient and the volume

change on melting cannot be determined from these

calculations.
.- Table 5-6 indicates that many of the of derived

properties for both potentials are in good agreement with

experimental results. The bulk modulus for Dagens'

potential is within twenty percent of the experimental

value at 293K. It is noted that a bulk modulus of 140 GPa

for Dagens' potential has already been calculated at OK,
15

which gives even better agreement . The specific heats

calculated using both potentials are within ten percent of

the experimental values. The thermal expansion

coefficient for the modified Morse potential is within

five percent of the experimental value at 293K. Table 5-6

therefore shows that both potentials are more accurate at

low temperatures, and near the melting point the

calculations differ significantly from experimental data.

Near melting, however, there are large differences in the
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Property Dagens mod. Morse Exp

B [GPa] 122 142

AH [KJ/Kg] 74 246 205
m

c (J/kg-K] 393 367
v

c [J/Kg-K] 413 386
p

-5 -5
-L (293K) 5.lxlO 4.85xi0.. T
T5 -5 -

OL (1000K) 10.4x10 6.72x10

T

AV 11% 5.17%
m

T (K] 1600 1480 1358

m

Table 5-6: Derived Thermodynamic Properties

calculated and experimental results. The latent heat of

melting for Dagens' potential is less than half of the

experimental value. The latent heat of melting calculated

using modified Morse potential is more reasonable and is

about twenty-five percent larger than the experimental

result, but there are appreciable discrepancies in the

values of the bulk thermal expansion coefficient at 1000K

and the volume change on melting. It is concluded that

the both potentials appear to be fairly good at low

temperatures, but are not accurate at high temperatures.

V.

1%- t . ''"'"'''' ' ... '' -. " '' ,. ° " " " " " " ' " ' . - ' . . - ' " . . . "
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All of the properties calculated in this Section can

be used to determine whether or not the system is in the

solid or liquid phase (except for the volume and pressure

in constant-volume and constant-pressure simulations,

respectively). In plots of the thermodynamic properties

such as those in Figures 5-3 to 5-6, the data will fall

into two separate curves if both liquid and solid phases

were simulated, and if no phase transitions occured while

property averages were calculated. If property averages

were calculated during the phase transition, the average

value will fall between the solid and liquid curves. In

the solid phase, atoms vibrate about their perfect lattice

positions and remain near those positions as long as the

temperature is not too close to melting. Consequently,

the mean-square displacement (MSD) will increase from its

initial value of zero and then fluctuate about an average

value which can be uniquely associated with temperature.

In a liquid, there are no equilibrium positions and atoms

are able to diffuse throughout the volume, and the MSD

continuously increases (the increase is linear if the

motion is diffusive). Hence, the time evolution of the

MSD indicates the phase of the system. All the properties

discussed thus far can only be used to determine the phase

of the system when values of the property are compared

between separate runs at different temperatures or from

the behavior of the property over time during a

9.
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* simulation. A property which can indicate the phase of

the system from a single instantaneous value is the order

parameter. As noted above, the order parameter defined by

equation (3.20) has a value of 1 for a perfectly ordered

system and 0 if the system is completely disordered.

Although the order parameter fluctuates during a

simulation, the fluctuations are small enough such that a -

single value can often indicate the state of the system.

An example of how some of these properties can be

used to monitor a phase transition is shown in Figure 5-8.

The internal energy U increases during the run as the

system leaves the low potential energy solid state and

enters the higher energy liquid phase. The volume also

increases since the liquid is less dense than the solid.

The order parameter decreases during the phase change;

note that the fluctuations in the order parameter are much

less than the fluctuations in the internal energy and the

volume, and that it decreases in a smoother fashion. The -

MSD increases over the length of the run although it also

fluctuates a great deal. The advantage of having all of

these properties available is that they can be used to

independently confirm one another. For example, the

decrease at early times in the order parameter is matched

by the increase in the internal energy.

Even though one has all of these properties available

to determine the phase of the system, the melting point of
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Figure 5-8: Properties During a modified Morse
Potential melting Transition

(This is Run 38 in Tables 5-4 and 5-5)
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* a potential is difficult to estimate accurately for a

number of reasons. One problem is that the velocity

scaling method discussed in Section 3.3 generates anI

ensemble which has an average temperature within about

five percent of the desired temperature. At 1400K this

means that the simulation temperature can be plus or minus

70K of the desired temperature. Hence, it is difficult to

accurately preset the temperature of the simulation near

the melting point of the metals. Techniques have been
27

devised to overcome this problem ,but unfortunately a

more serious difficulty exists.

Ideally, the best way to determine the melting point

of the a system is to calculate the free energy of the

system in the solid and liquid states at different

temperatures. The intersection of the two curves is the
61j thermodynamic melting point . Unfortunately, howeve'r,

the free energy is very difficult to calculate. Instead

of calculating the free energy, a more commonly used

Nmethod is to initialize the simulation at a given

temperature and phase and then observe whether or not the

system stays in that phase. If one waits long enough, the

system will eventually enter the phase with the lowest

free energy. Unfortunately, it may take a long time for

the transition to nucleate, and the information available

h to us from simulation cannot tell us how long this will
take. (Note that the transition shown in Figure 5-8 took
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over 3000 time steps). As one moves away from the

thermodynamic melting point, however, the activation

energy for nucleation of the transition from a higher to a

lower free energy phase decreases and the melting

transition can occur within reasonable simulation times of

a few picoseconds. Consequently, if one continues to

raise the temperature of the system, at some point melting

will occur. The melting point under these circumstances

is called the structural melting point, and the

temperature at which it occurs is higher than the
61

thermodynamic melting temperature

Keeping these difficulties in mind, the melting

points for Dagens potential for the different simulation

volumes are estimated to be 2000K, 1850K, and 1300K at V ,

0
V , and V , respectively. The value of the melting point
s 1

corresponding to ambient pressure is taken to be the

average of the two latter values, i.e., about 1600K. The

melting point of the modified-Morse potential (at ambient

pressure) was found to be about 1480K. All of these

values are larger than the experimental melting

temperature of copper at 1357K.

5.
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5.3 Vibrational Properties

The vibrational properties of a solid can be

calculated from the positions and velocities of the atoms

at discrete times during the simulation. Although it is

possible to calculate the vibrational frequency spectrum
62

directly from the velocites , the usual method is to

calculate the velocity autocorrelation function (VACF) and

then take its Fourier transform. The VACF is given by

v (0) . v (t)

VACF(t) = -Z > (5.5) ""
N i v (0) . y (0)

where v (t) is the velocity of atom i at time t. The <>

brackets indicate a time average which emphasizes that it

is necessary (especially for the number of atoms used in

these simulations) to average over many VACF values

calculated for a particular time t. As the simulation
0

proceeds, the time "origins" denoted by t created
nperiodically. The atom velocities and their dot product

are saved for each origin. To calculate the VACF at a

particular time t', we wait until that number of time
0

steps has passed a given origin n, i.e., until t- t =t',
n

and calculate the numerator of (5.5). In this manner each

origin contributes one value to the average for a given

time t' of the VACF. For the results that follow, 100

origins separated by 30 time steps were used, which gave

P.L
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contributions to each time t of the VACF. The VACF for

the pseudopotential and the modified Morse potentials at

about 298K are shown in Figure 5-9. The pseudopotential

VACF was calculated at V ; the modified Morse VACF at
0

ambient pressure.

The Fourier transform of the VACF yields the

vibrational frequency spectrum of the atoms. The

vibrational spectra for the two potentials are plotted in

Figure 5-10. This plot also shows experimentally observed
63

spectra for copper at 49K and 298K . The spectrum for

the pseudopotential match the experimental observations

fairly well, giving good agreement at the positions of the

peaks and valleys. This confirms the conclusions of

Upadhyaya et al, who found that the phonon spectra for the .

pseudopotential were in excellent agreement with

experimental data1 7  The spectrum of the modified Morse

potential does not match quite as well and slightly misses

the high frequency peak. It is noted that the system

volume using the modified Morse potential is very close to

the volume of real copper so that this cannot be the

source of the discrepancy.

- .. .. . . . . . . .
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Figure 5-10: Frequency Spectra at -298K
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5.4 Discussion

As indicated in Table 5-6, both potentials appear to

perform better at low temperatures and have difficulty in

giving satisfactory high temperature properties near

melting. The reason for the excellent low temperature

behavior is probably that both potentials, and especially

Dagens' potential, reproduce the experimentally calculated

phonon spectra fairly well, as indicated in Figure 5-10.

Of course, Dagens' potential has the additional

justification that it is derived using the pseudopotential

method and is closer to a first principles calculation.

Because of this, it is probably better to use Dagens'

potential in the low temperature regime. It is noted once

again, however, that the Dagens' interatomic potential is

p.@

incomplete for these types of calculations without the

structure independent contribution.

Although the structure-independent contribution to

Dagens' potential was not available for these

calculations, it is possible to speculate as to whether or

I--

not it could make a difference. If Dagens' potential is

assumed to be correct at a given volume, the volume

derivative of the structure independent energy is given by
tehavdifference in the simulationprsure and ythe

experimental pressure of copper under the same conditions.

This value, which can be called a pressure correction to

- **. -.
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the simulation pressure, should be valid over all

temperatures for the given volume if the potential is

correct. At V , the volume of real copper at ambient
0

temperature and pressure, the simulation pressure is about

23.6 GPa and hence the pressure correction at this volume

is -23.6 GPa. We can calculate the pressure of real j
copper at ambient temperature at the volume V by using

s
the bulk modulus of real copper; this yields a pressure of

-9.8 GPa since copper must be expanded to this volume.

The simulation at this volume and temperature gives a

pressure of 15 GPa; the pressure correction at volume V
s

is thus -9.8 - 15 = -25 GPa. We can also calculate the

pressure correction at V at the melting temperature,
s

since by definition of V real copper is at 0 GPa. From
S

Figure 5-5 we find that the simulation pressure at the

melting point of real copper, 1357K, is about 20 GPa.

This gives a volume dependent contribution to the

potential of -20 GPa, which differs from the estimate at

ambient temperature of -25 GPa by 20 percent. Noting that

the bulk modulus is very sensitive to pressures of this

magnitude since it is calculated from a difference of two

pressures, it is concluded that no volume dependent

contribution could make the pseudopotential calculations

match the experimental results.

The overall evaluation of the thermodynamic

calculations of Dagens' potential is that the potential

:[: .'I '.
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appears to work well at low temperatures (less than

ambient) but is not very successful at high temperatures.

It is interesting to note that preliminary thermodynamic .4
15

calculations for Dagens' silver potential , which are

discussed in Chapter 8, lead to the same conclusion.

Although the silver appears to be successful in matching

the melting temperature of real silver, it does not do

well with other high temperature properties. On the other

hand, the low temperature properties calculated by the

silver potential are even better than the copper potential

results.

• . .~
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Chapter 6

Small Vacancy Cluster Migration

6.1 Introduction

The primary factors which control the concentration

and migration of defect clusters are their binding and

migration energies. In general, the equilibrium

concentration and the migration (or diffusion) rate of a

defect are described by an Arhennius relationship with

temperature. For example, the diffusion coefficient for a

defect can be expressed as

m
D(T) = D exp(-E /kT) (6.1)0

m

where k is the Boltzmann constant, E is the migration

energy for the defect, and D is a pre-exponential factor

which is independent of or only weakly dependent on

temperature. Since the defect energies appear as

exponents, they overshadow any minor temperature

dependence of the pre-exponential terms.

As discussed in Chapter 4, molecular statics can be

used to calculate the formation, binding and migration

energies of defects in a material, provided a suitable

A4
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interatomic potential can be found. The purpose of this

Chapter is to present the results of molecular statics

calculations of defect energies using Dagens' copper
15

potential discussed in Chapter 2. In the following

section the results of migration energy calculations of

the tri- and tetravacancies in copper are presented. This
1, 3

work extends the results given by Lam et al for small

vacancy defects in copper. A common experimental method

which has been used to determine small defect energies is
4

isochronal annealing .To make the -amparisons with the

annealing experiments less ambiguous, the experiments are

modeled with rate equations using the detect model based

on the migration and binding energies calculated in this

work and by 1La3 The annealing simulations are

discussed in detail in Section 3. In the final section,

the molecular statics results are compared to previous

computer calculations and experimental data, and the

applicability of the defect model for copper is critically

discussed.

6.2 Migration Energy Calculations

As was discussed in Section 4.5, the migration energy

between two vacancy defects which can transform from one

to another by a single vacancy jump is given by the

magnitude of the energy barrier which must be overcome

during the jump. Many different migration energies can be
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associated with a vacancy cluster of a given size since

clusters have many different metastable configurations.

Most of these migrations are of no practical interest,

since a migration mechanism will be unlikely to occur if

it involves configurations which have large formation

energies compared to other configurations, or if other

lower energy migration mechanisms exist. Consequently,

one is interested in the minimum energy configurations of

a cluster and in the low energy migration mechanisms of
m

these configurations. The migration energy E of a
nV

n-vacancy cluster is specifically defined as the energy

barrier of the lowest energy mechanism which can move the

the lowest energy configuration of the cluster from one 2
position in a perfect, infinite crystal to any other -

position. A perfect, infinite crystal is specified to

eliminate interactions with other defects and surfaces, ..,L

which are not considered here. It is also important to

specify that the mechanism be able to move the defect

throughout the crystal, since some mechanisms may only be

able to move the defect within a limited region. The

strategy used to calculate the migration energy of a

cluster is to calculate the binding energies of the *...

cluster configurations to determine the most stable

configuration. One then calculates the energy of each

migration mechanism which can move the cluster from one

position to another in a crystal.

• ."'.**.."_
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All of the defect energy calculations were done using

the techniques discussed in Section 4.5. The system

consisted of a 500 atom lattice from which the necessary

number of vacancies were removed. Dagens' copper

potential was employed with a potential cutoff radius of
45 -1

8.5515 A and a Duesbury factor of 0.25a , as discussed
1, 3

in Section 2.3. Lam et al have already calculated

many of the energies of small vacancy clusters in copper

using Dagens' potential, but with larger systems (864 to

2048 atoms) and longer cutoff radii. To insure that

system used in this work was sufficiently large and the

potential cutoff radius was sufficiently long, the small

vacancy defect energies already calculated by Lam et
1, 3

al were calculated with the system used in this work.

Given the relatively large cutoff radius and system size,

and the use of the Duesbury factor, the results of this
1, 3

work should correspond closely to those of Lam et al

In Table 6-1 it is shown the difference in the

calculations of this work and those of Lam less than

two percent.

In Figure 6-1 a number of copper tri- and

tetravacancy configurations are shown. Although many

configurations are possible, these configurations are of

particular interest because of the role they play in the

migration of the clusters discussed below. The binding

energies of these configurations are shown in Table 6-2.

[I

...................- .. * *.
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EnryLam et al This Work

E 0.82 0.81

1v

4 b
E 0.05 0.05
2V

* m
E 0.55 0.55
2V

b
E 0.15 0.15
3V

b
E 0.28 0.28
4V

(Energies in ev)

Table 6-1: Comparison of Copper Results with
1, 3

Lam et al
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Figure 6-1: Vacancy Cluster Configurations in Copper
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Cluster Binding Energy (ev)
3A 0.155
3B 0.109
3C 0.095
4A 0.285
4B 0.268
4C 0.268

Table 6-2: Binding Energies of Tri-
ani Tetravacancies in Copper

In Figure 6-2 some migration mechanisms for the

trivacancy are shown. In this Figure the primed and

unprimed states indicate the same configurations but

different positions or orientations. The first migration

mechanism, indicated by the 3A->3A' transition, results in

movement of the trivacancy to a different face of an fcc

tetrahedral cell. Although the trivacancy can reorient

itself within the tetrahedral cell, it is not possible for

the trivacancy to escape the cell through this mechanism

and thus it is not considered a true migration
64

mechanism . The other two mechanisms in Figure 6-2,

3A->3B->3A' and 3A->3C->3A', do result in migration

because through them the trivacancy is not limited to a

small region of the crystal. In these cases, the

trivacancy moves through an intermediate metastable

configuration before returning to the stable configuration

at a new site. In Figure 6-3 configuration energy versus

reaction coordinate is plotted. The plot for the

reorientation mechanism is interesting because it

"-a'..-.'-- - 2- '.'- 2/- ...................................... .-.-.. ...-.. " "--'- ,-''..,• "." -. ".-" •
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indicates that there is an intermediate configuration

analagous to the stable trivacancy for the calculated for
3

silver by Lam et al . The plots for the two true

migration mechanisms yield no surprises and show that the

migration which passes through configuration 3B is
m

energetically favored and E = 0.56 ev, which is about
3V

the same as the divacancy migration energy. .1

The migration mechanism for the copper tetravacancy

is shown in Figure 6-4. The tetravacancy passes through

three intermediate configurations to migrate, which can be

written 4A->4B->4C->4B'->4A'. The reaction coodinate

plots in Figure 6-5 show that the migration from

configuration 4A to 4B has the highest energy barrier, and

hence it controls the energy for the overall migration.
m

Thus, E = 0.38 ev, which is lower than the calculated
4v

migration energies of single, di-, and trivacancies.

6.3 Annealing Kinetics

The results of the calculations of the defect

energies in copper are summarized in Table 6-3. An

experimental method which has been used to determine these
4 4

values in metals is isochronal annealing . As Balluffi

points out, however, annealing experiments are not always

easy to interpret, especially when complicated processes

are involved. In copper, for example, only the single

vacancy migration energy is known although the divacancy

~i-j
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Figure 6-2: Copper Trivacancy migration mechanisms
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Figure 6-3: Copper Trivacancy Migration Barriers
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Figure 6-4: Copper Tetravacancy Migration Mechanism
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Figure 6-5: Copper Tetravacancy Migration Barriers
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4, 65
is believed to be more mobile . Direct comparison of r

the defect energies of large clusters with experimental

values is hence not possible and another approach is

necessary. The tri- and tetravacancy migration energies

calculated in the previous section complete the set of

binding and migration energies of vacancy clusters with

one to four vacancies calculated by Lam et al

Although one cannot practically simulate annealing using

molecular statics and dynamics, the defect energies can be

used in other theoretical and computational methods which

are capable of doing modeling annealing. In particular,
66

rate equations are very useful for modeling of large

systems in which the defect distribution is homogeneous

and is often used to interpret annealing results (for
64

examples in particular metals, see De Jong and Koehler
67 68

Seeger and Frank , and Collins et al ). This gives one

the ability to model defect annealing in copper and

compare the results with experimental observations. In
-;-

this section, a general background will first be given on

annealing experiments, followed by the method and results

of modeling the experiments using the defect energies

calculated by molecular statics and dynamics.

The initial step of an annealing experiment is the

introduction of defects into the material using, for

example, electron-irradiation or quenching. The basic

.-.. .- s-.

-.---5 ..* *..**-" . -.i.i.' 2. -S- *.'. 'i'' .• " - '"-: . -. - .'' -- i.- .. - *. . "" "."-
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Energy (eV)
Defect Binding Migration

V 0.82
. ,

V 0.05 0.55 K
2

V 0.15 0.56
3

V 0.28 0.38
4

Table 6-3: Binding and Migration Energies
of Small Vacancy Clusters in Copper

* 1, 3
( from Lam et al )

idea behind annealing experiments is then to activate as

few different types of defects at a time as possible by

systematically raising the temperature of the specimen.

Electron-irradiation creates single vacancies and

interstitials in the material; at low temperatures the

difference in the migration energies of vacancies and

interstitials allows the latter to migrate while the

former is effectively immobile. The general temperature

regimes over which each type of defect anneals are called
69

Stages. Within the one-interstitial annealing model , as

the temperature of the material is raised, the

interstitials recombine with vacancies, anneal at sinks,

" and form interstitial clusters during Stage I. In Stage

II, interstitial clusters coarsen and some interstitial
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reactions with impurities may occur. In Stage III, which
4

occurs at about 280K in copper , there are no single

interstitials and the remaining single vacancies begin to

migrate. Similar to interstitials, the vacancies can form

vacancy clusters and annihilate at the interstitial

clusters formed during Stages I and II and at extended

sinks. At higher temperatures, two additional Stages are ;:L4

found in most metals in which the vacancy clusters coarsen

and eventually all of the original damage is annealed.

Another commonly used method of introducting defects

into a material is quenching. The material is taken to a

high temperature, near melting, and the relatively low

formation energy of vacancies allows an appreciable number

of vacancies to exist in equilibrium. The sample is then

quenched to a very low temperature at which the vacancies

are supersaturated but also immobile. The temperature of

the specimen is then systematically increased as in

electron-irradiation case, although of course we do not

expect to observe Stages I and II since no interstitials

are present. The advantage of quenching over

electron-irradiation is that only vacancies are formed in

quenching because the formation energy of interstitials is

too high for them to exist at an appreciable concentration

even at high temperatures. On the other hand, during the

quench it is possible for vacancies to form clusters,

which may make it difficult to interpret the experimental

results.
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The defect concentration is usually monitored using

some macroscopic material property P (traditionally this
4

has often been electrical resistivity ), and analysis of

the changing concentration with time and temperature

enables one to calculate the effective activation energy

for the annealing process. If annealing is controlled by
act i!

a single activation energy E ,the annealing rate R is

given by

dP(T) 0 act
R(t,T) = - = R (t) exp(-E /kT) (6.2)

dt0
where t is time. R (t) depends on the vacancy defect

concentrations at time t, but is independent of

temperature. One method of determining the activation
act

energy E from the measured annealing rate, called the
66

change-of-slope method ,is to instantaneously change the

sample temperature. Let T and T be the sample
1 2

temperatures just before and just after an instantaneous

temperature change, respectively, and let R and R be the
1 2

annealing rates just before and after this change. Then

0 act
R = R exp(-E /kT ) (6.3)
1 1 1

0 act
R = R exp(-E /kT ) (6.4)
2 2 2

r ... ... . . . < .°.." . ... ...° : . .° : :' . . . ' : .. ..L 5 . .. .. .. .. - .' .- .. .-
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0 0
Since the temperature change is instantaneous, R = R and Oki

1 2
act

we can solve equations (6.3) and (6.4) for E to get

-k ln(R /R )a ct 1 2: -i

E -(6.5)

I/T - I/T
1 2

If a single process (say single vacancy migration) is
act I

rate-limiting, then a well-defined activation energy E

can be assigned to that process (providing the process

itself can be identified). In general, however, various

processes can take place simultaneously; the problem then - -

is identifying the rate-limiting process or processes so

that an effective activation energy can be assigned.

An annealing experiment can be modeled by solving a

set of rate equations which describe the possible

reactions in the sample. Let Vn denote an n-vacancy

cluster where n = 1,...,5, VC denote all larger vacancy

clusters, and S denote sinks. The reactions which are

included in this work are then given in Table 6-4. Some

of the possible cluster-cluster reactions have not been

included in anticipation of the results in which they are

not significant. The sinks S in Table 6-4 can represent,

in the following analyses, both interstitial loops after

electron-irradiation and the low concentration of sinks

present after quenching. Although it is possible for

appreciable concentrations of large vacancy clusters to

;.. .. ... .. .,-. . - .-.... .. .. . . - -. .. .. ... . .. . . . . . , .,.. . . , --. . ,... . . 4 -. -.- , ,- :,..., . .
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form, it is not practically possible to model all sizes of

clusters. In the model in Table 6-4, all clusters with

six or more vacancies are represented by VC. Although the

size of the largest cluster which is explicitly modeled in

Table 6-4 could have been increased to a larger value, the

information about these larger clusters is limited. The

rate constants for their reactions would have to be

assumed without specific information about the interaction

radii between the large clusters and other defects. The

fractions in the VC reactions are an attempt to account

for the reduced contribution a vacancy makes to the

macroscopic property P when it is a member of a large
70

cluster . The justification for these fractional values

will be discussed when the macroscopic property P is

defined below.

A set of rate equations which describe the reactions

in Table 6-4 can now be defined. Let the concentration of

a vacancy cluster Vx be represented by c , and the sink
x

concentration by c . The rate equations describing the
s

reactions in Table 6-4 are then

1*

II.

7
. .. . . . . . .. . . . . . ****.* *~ . .. -
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V1 +V1 <=> V2 V1.+ S- S

V2 +V1 <=> V3 V2 +S->S

V2 +V2 ->V4 V3 + S- S

V3 +V1 <=> V4 V4 +S->S

V4 + V1 <=> V5

V1 + V5 - VC

V2 + V5 ->1.15 VC

V3 + V5 - 1.30 VC

V4 + V5 - 1.45 VC

V1 + VC ->1.07 VC

V2 + VC ->1.14 VC

V3 +VC ->1.21 VC

V4 + VC -> 1.28 VC

Table 6-4: Reactions of Vacancy Defects
withi one another and with Internal

Sinks

2
c=-2a c -a c c - a c c -A

1 11 1 12 1 2 1313

14 14 51 15 Cli1C

2b c + b c -

2 2 3 3

a c c (6.6)

.' .- S I.
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2 2
a c8 C a c c -2a c-

2 11 1 12 12 22 2

a c c -a c c -a c c-
52 25 C2 C2 S2 S2 I

b c + bc (6.7)
2 2 3 3

3 12 12 13 13 533 5

a c c -a C c-
C3 C3 S3S 3

b c +bc (6.8)
3 3 4 4

2
c a cC c C -8 CC c

4 13 13 22 2 141 4

a c c -a c c -a c c-
54 45 C4 C4 S4 S4

b c +bc (6.9)
4 4 5 5

5 41 14 51 15 522 5

a c c -a c c
53 35 544 5

b c (6.10) '
5 5

WE
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a cc + 1.15 a c c + 1.3a c c +
C 51 1 4 52 2 5 53 3 5

1.45a c c + 0.07a c C +
54 4 5 C1 1 C

0.14a c c + 0.14a c c + ?*
C2 2 C C3 3 C

0.28a c c (6.11)
C4 4 C

The rate constants a are for association reactions
xy

between defects represented by the concentrations c and
x

c . The second subscribt denotes the more mobile
y

component of the two defects. The rate constants b are
x

for the breakup or dissociation of the clusters C

represented by concentration c into two smaller clusters.
x

70
The rate constants are selected following Johnson They

consist of the following three parts: an attempt frequency

f ; a geometrical factor g ; and an energy E which
y x y

determines the temperature dependence of the rate

constant. The rate constants are then

a = f g exp(-E /kT) (6.12)
xy y x x

;-. "

b = f g exp(-E /kT) (6.13)
x b,x b,x b,x

where the subscript 'b' indicates a factor of a breakup

reaction. The values used in this work are shown in Table

6-5. The main uncertainties are in the geometrical and

frequency factors, since these quantities are difficult to

ft . °. ft • .. •. . . . . . . , -° -. . . . . . ..
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experimentally determine and have not been actually

calculated here. A range of values were tested for these
70

factors and, confirming Johnson's conclusions we found

that the results were not very sensitive to them. The

energies are the main quantities of interest here since

these were calculated in the previous section using

molecular statics, and are the values which are normally

determined in annealing experiments. The migration

energies are taken directly from the molecular statics

results. The "breakup" or dissociation energy energy of a

cluster into two smaller clusters is calculated by adding

the migration energy of the most mobile component to the

difference in binding energies of the original cluster and

the binding energies of the components. For example, the

dissociation energy of a trivacancy into a single and

divacancy, where the divacancy is more mobile than the

single vacancy, is given by

brk b b m
E =(E -E )+E (6.14)
3V 3V 2V 2V

As pointed out above, the defect concentrations are

usually not directly measured in an annealing experiment,

but instead some macroscopic property P which is a

function of the concentrations is measured. P has

traditionally been the electrical resistivity. It is

believed that the contribution of a small vacancy cluster

I- ,
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E [ev] g
Defect f brk mig brk

14
V lx10 0.82 12 12
1

13
V 2x10 0.55 0.87 84 14
2

12
V 4xl0 0.56 0.65 144 14 -

3

12
V 4x10 0.39 0.69 164 14
4

12
V 4x10 0.76 180 14
5

V 180 14
C

S 12

I..'

Table 6-5: Values of the Physical Parameters
Used in Equations (6.12) and (6.13)

to the electrical resistivity is approximately

proportional to the number of vacancies it contains,

although it is also known the contribution per vacancy
71

decreases as the cluster grows . In this model the

macroscopic property P is a simply a linear combination of

the defect concentrations given by
S.-.

P = i c + 6c (6.15)

.. ."

. . . . . . . . .'5~* . .. *5!
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The decrease in contribution for larger vacancies is

accounted for by the fractional terms in the V reactions
C

in Table 6-4. Although this model is no doubt much.I

simpler than what occurs in real metals, the model does ;"

predict the correct remaining resistitity after annealing

of a quenched sample.

It is difficult to simplify the equations (6.6) to

(6.11) without introducing unrealistic assumptions.

Because of this, it was decided to solve the equations

(6.6) to (6.11) nummerically. The parameters which were

varied between different runs were the initial single

vacancy concentration c (0) and the sink concentration c
1 S

The ranges of these values covers the spectrum of standard

annealing experiments.

The primary quantities we wish to calculate in these

runs are the temperature T at which the annealing rate
ann

is greatest and the average activation energy calculated

using the change-of-slope method. Figure 6-6 shows the
-5

results of an annealing run with c (0) = 10 and
1

-6
c = 10 . In these plots we show 1) the "resistivity" P

S
versus temperature; 2) the temperature derivative of P,

T'dP/dT; and 3) the activation energy calculated at the

temperature changes. Note that as the temperature is

increased, a point is reached at which the annealing rate

is maximum. The temperature at this point is T for
ann
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this particular run. Since the effective activation

energy may vary with temperature during the run, the

average activation energy is calculate from the energy

values between about 95% and 5% of the initial resistivity

R
0

The overall results of the rate equations solutions

are shown in Table 6-6 and 6-7. Table 6-6 indicates that

the activation energies do not follow an easily

predictable pattern. In general, the effective activation

energy is fairly close to the single vacancy migration

energy of 0.82 eV. This indicates that single vacancy

migration controls the annealing rate in most runs. The
-5

primary exception is the case in which c (0) = 10 and
1

-6
C$= 10 . This run is shown in Figure 6-6. In the

beginning of the run the activation energy is relatively

low and then increases to an energy similar to the average

values in other runs. This indicates that initially

another process in addition to single vacancy migration is

also controlling the annealing. At early times the

primary pathways for the annealing of vacancies is the

combination of single vacancies to form divacancies, which

then migrate to sinks. At later times, the single vacancy

concentration decreases such that a single vacancy will

annihilate at a sink before it can combine with another

vacancy. Hence, at early times in this particular run,

I'.
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Figure 6-6: Results of an Annealing Run
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divacancy migration partially controls the annealing and

the divacancy migration energy affects the calculated

effective activation energy.

-log(c )
S

-log(c (0)) 4 5 6 8
- 1% 1

4 0.80 0.78 U.79 u.79
5 0.81 0.78 0.68 0.74
6 0.81 0.80 0.79 0.81

Table 6-6: Average Effective Activation Energies
of Anneals (eV)

The behavior of the maximum annealing temperature

T with sink and initial vacancy concentration, shown in
ann

Table 6-7, is easier to explain than the behavior of the

average annealing temperature. We find that at high sink F
concentrations, T is relatively independent of initial

ann
vacancy concentration, but at low sink concentrations the

initial vacancy concentration does affect T . At high
ann

sink concentrations, the primary annihilation mechanism

for vacancies is absorption by sinks. This is a first

order reaction since its rate equation term is r-

proportional to the single vacancy concentration, given by

a c c. The probability that an individual vacancy will
Sl 1 S
interact per unit time is simply the rate equation term

divided by c , i.e., a c Hence, the probability that a
particuar41 S

particular individual vacancy will interact with a sink is

independent of vacancy concentration. As we increase the

L

7.
I
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vacancy concentration, we expect more vacancies to

interact with sinks per unit time, but the peak annealing

rate should occur at the same temperature. At low sink

concentrations, instead migrating directly to sinks,

single vacancies form divacancies first and which either

migrate to a sink or perhaps form larger clusters. The

rate-limiting step is the vacancy-vacancy interaction
2

which is a second order reaction given by a c

(Strictly speaking, the overall reaction will not be quite

second order, since the dissociation of divacancies, a

first order reaction, will also play a role). The

probability that an indivividual vacancy will interact

with another vacancy is proportional to a c . Hence, the11 1 _

higher the concentration, the faster the reaction will

occur and T will occur at a lower temperature.
ann

-log(c
S

-log(c (0)) 4 5 6 8

4 282 285 287 287
5 291 306 325 325
6 291 312 335 383

Table 6-7: Temperatures for Maximum Annealing [K]

6.4 Discussion

Compared to calculations of the binding energies of

vacancy clusters, there have been very few calculations of -

their migration energies for other than divacancies. The

"I-'

• i ' " ' i . -- i . -- i .1 ". '- . .-- - ' "..- . . . . . . . ...- .i. : i i i i . . L . : . i -i - . . , i . - - Z ~ , i . : . . . i . . ' - i . . - ' . i i -
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primary reason for this is that, although single and

divacancy migrations in fcc metals occur through simple

and predictable mechanisms, the large number of possible

configurations of large clusters makes enumeration of

their migration paths difficult. As was shown in Section

2, it is necessary to first determine the stable cluster

configuration(s), and then calculate migration energies of

favorable migration paths. The first work in this area

was done by Johnson on vacancy clusters in nickel using
22

the Johnson I potential . After calculating the binding

energies various vacancy clusters, Johnson discovered that -

the energies could be accurately estimated by bond

counting (creation of a vacancy breaks twelve nearest

neighbor bonds). Bond-counting suggests that the most

compact clusters (voids) are the most stable, which is

definitely not the case for the copper potential in this

work. As is shown in the following Chapter, beyond

clusters of ten or more vacancies, stacking fault

tetrahedra and hexagonal loops are formed and voids are

not observed. Johnson also noted that the calculated

migration energies of vacancy clusters could be estimated

by the divacancy migration energy added to one-half the

difference in the binding energies of the initial and

final configurations. Since, to migrate, a large cluster

must partially disassociate, i.e, move through a

higher-energy configuration, the large cluster migration

. .. - . , . - . . . . . . . o-
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energies are always higher than the divacancy migration

energy. This is obviously not the case in this work in

which the tri- and tetravacancy were at least as mobile as

the divacancy. The Johnson I potential probably yields

such simple formulas for vacancy properties because it

contains only first nearest neighbor contributions.

Dagens' potential used in this work is truncated at the

twelfth nearest neighbor distance, and the lattice must be

held together by applying an external stress. Although

simple formulations have been used to estimate the vacancy
72

cluster migration energies , the conclusion here is that

vacancy migration energies are very sensitive to the

pot'ential and must be calculated using molecular statics.

The most interesting aspect of the tri- and

tetravacancy migration results is that the trivacancy is

about as mobile as divacancy, and the tetravacancy is more

so. Trivacancies are believed to be more mobile than
68

single and divacancies in some metals such as gold and
4

aluminum based on experimental results, but experimental

studies have not been able to determine migration energies

for divacancies or larger vacancy clusters in copper.

There is evidence for a vacancy cluster in copper which is

more mobile than the single vacancy, but the number of

vacancies in this cluster has not been unambiguously
5, 6, 7 5

identified . Wienhold et al did annealing studies

of electron-irradiated copper using doped and undoped

" . - . • . .-. • ° • o - , . . . " ; . . " • . " , • °" % . . . . ..



samples. Doping was used in electron-irradiation 2

annealing experiments to suppress the formation of vacancy

55

clusters. Wienhold et al found that the doped and

"undoped samples both yielded the same activation energy of

about 0.71 ev, which indicated that single vacancies have '

an activation energy of about 0.71 ev. On the other hand, "°"

•.4.

the annealing of the doped sample was governed by first

order kinetics and the undoped sample by second order

kineticsa First order kinetics in the former sample

indicates that the single vacancies are annihilating at

sinks Second order kinetics indicates thr he

rate-controlling step in the annealing is the associationdswey

of a defect with another defect of the same type (e.g.,

two single vacancies combining to form divacancies).

Hence, clusters must be forming, but apparently they do

not affect the effective activation energy of the
5

annealing. As Wienhold et al point out, this can happen

if the larger clusters (presumably divacancies) have a

migration energy of about 0.71 ev, or if they are so

mobile that they do not limit the rate of annealing (i.e.,

they combine with sinks or other vacancies almost

instantly on formation because they migrate so quickly).
5

The latter possibility was selected by Wienhold et al as

the more likely case.
4

Balluffi has reviewed the annealing studies for

various metals including copper. The main conclusion of

U
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these studies is that the calculated activation energy

using quenched materials is relatively constant and there

is no indication of the effect of divacancies on the

activation energy.

The results of the annealing runs summarized in

Tables 6-6 and 6-7, however, do indicate that the larger

clusters do affect the effective annealing activation

energy. In one particular case, it was found that an

activation energy of almost 0.2 eV less than the single

vacancy migration energy was calculated. Although

experimental uncertainties can mask some variation in the

activation energy, it is difficult to believe that a range I]
of 0.2 eV (i.e., close 25 percent) would be missed. It"

should be noted that the very low sink concentration runs

are probably closest to quenching studies the activation

energy was fairly constant. The high sink concentration

runs correspond to electron-irradiation of doped samples,

and in these cases the activation energy is also constant.
-5

The mid-range sink concentration runs, with c = 10 and
-6 S

10 , probably correspond to electron-irradiation of

undoped copper, and it is in these cases where calculated

and experimental results differ.

The results in Table 6-7 follow the behavior in doped
5

and undoped copper reported by Wienhold . At high sink

concentrations, it is found that the primary reaction is

.1.
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first order, but at low concentrations a slower reaction

is also involved. This is not surprising since

divacancies are included in the reaction scheme in Table

6-4, but it does show that neither larger vacancies nor

the low binding energy of the divacancies suppress this

behavior.

Other experimental evidence for highly mobile vacancy

clusters in copper come from perturbed-angular-correlation
6, 7

(PAC) studies . PAC is a useful method because only
73

defects which are mobile are identified . PAC studies on

copper indicate that two vacancy-like defects are mobile
6, 7

in stage III . Although other mobile defect clusters

were not found, it is possible that the highly mobile tri-

and tetravacancies calculated in this work would be

invisible to PAC. The highest tri- and tetravacancy

concentrations observed in the annealing runs in this work
-9 -11

were 10 and 10 , respectively, which may be too low to
73

be detected . As Wichert points out, defects are also

invisible to PAC if the defects do not bind to the probe

atoms, or if the defect-probe configuration has cubic
73

symmetry . On the other hand, based on this work, we

cannot say whether or not the mobile vacancy cluster

identified by PAC is in fact the divacancy.

The general conclusion of the small defect cluster

calculations is that tri- and tetravacancies are more "'Z

mobile than single vacancies and at least as mobile as
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divacancies in copper. Although these results are

interesting in themselves, it is difficult to make

comparisons with experiment because the data on tri- and

tetravacancies in copper is nonexistent. Kinetic modeling

of defect annealing in copper indicates that small vacancy

clusters should affect the calculated effective activation

energy at some defect and sink concentrations, but in most

cases the effective activation energy is constant which is
4

supported by experiment . Since it is possible to

question the ability of the rate equations to model
5, 70, 74

annealing for a number of reasons , a final

conclusion cannot be made in this respect.

II

-..................... .........................
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Chapter 7

Large Clusters

7.1 Introduction

The small vacancy defects investigated in Chapter 6

are mobile at temperatures as low as 280K in copper. If

vacancies are created at temperatures higher than about

280K, or if the temperature of the specimen is

subsequently raised above this temperature, the vacancies

will migrate until they combine with other defects or are
75

absorbed by sinks. Experiments in quenched and
5

electron-irradiated copper in Stage III, during which

vacancies are mobile, indicate that much of the initial

damage at the beginning of the Stage is not annealed,

which suggests that large vacancy clusters are formed.

These clusters grow, not by migrating, but by capturing

single vacancies and small mobile vacancy clusters. The

clusters, if sufficiently large, can be observed by
8

transmission electron-microscopy , and it is found that

large vacancy clusters are in the form of hexagonal

dislocation loops and stacking fault tetrahedra (SFT).

The purpose of this Chapter is to present and discuss

the results of molecular statics calculations of the

K

F: ' - . - . - . - . - . . , , - . - - . , , • . . . - -- . . . . . . - - . , . . . . . . . . " - . .
F:., , , -. . .% " j . ., - . - . , . . . ., . . . - ,% , . +..•. ._- .
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properties of these large vacancy clusters in copper.
76, 77

Previous copper calculations using empirical

potentials have determined the critical size at which the

vacancy platelets collapse into loops or SFT. However, no

calculations have been performed to determine which of the

shapes are the the most energetically stable. Since the

stacking fault energy is an important factor in

determining the stable large cluster configuration, it is

calculated first using Dagen's copper potential. The

displacement fields and binding energies of various shapes

of large clusters are then evaluated. In the final

section, these results are compared with previous

calculations and experimental observations.

7.2 Stacking Fault Energy

It has traditionally been difficult to calculate

accurate stacking energies using interatomic potentials

and computer simulation. Probably the most important

reason for this is that the stacking fault energy depends

on the long range part of the potential, i.e, third

nearest-neighbor distances and greater, which is not

accounted for very well by empirical potentials.

(Empirical potentials can, however, be fitted to the
76, 32

stacking fault energy ) For example, Johnson's iron

and nickel potentials only include second nearest-neighbor i

interations, and so have a stacking fault energy of
78

zero

I.o-
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The stacking fault calculations were performed by

setting up an fcc lattice which was rotated so that the

[iii] direction was pointing in the z-direction, as shown

in Figure 7-1. This was done because a stacking fault is

a planar defect, and one can simulate an "infinite" fault

by taking advantage of periodic boundaries. The lattice

then consists of (111) or close-packed planes, which can

be stacked in any order. To apply periodic boundary

conditions to this rotated lattice, the number of planes

required to simulate a perfect lattice must be 3n, where n

is an integer, or 3n-1 to simulate a lattice with a single

stacking fault. For most of the calculations 14 (111)

planes were used, and the boundaries in the x and y

directions were made larger than twice the cutoff distance

for the potential.

The results of the stacking fault calculations are

shown in Table 7-1. Also included in this Table are

results from calculations by Cotterill and Doyama using
12

Born-Mayer and Morse potentials for copper . The

Born-Mayer potential yields almost negligible stacking

fault energies. The Morse potential yields good results

when shorter cutoff radii are used, which is probably

fortuitous since the Morse potential is not designed to

account for long range interactions. The results for

Dagens' potential are similar and match the experimental

results at short cutoff radii of less than 12 A. At
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Figure 7-1: Schematic of System for
cilEulating the Stacking

Fault Energy
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longer cutoff radii, the stacking fault energy becomes

negative which means that the HCP lattice is more stable
15

than the FCC lattice. Since Dagens has shown that the

FCC lattice is the more stable than the HCP lattice for

the copper potential, the reason for this discrepancy is

most likely that the fit presented by Lam et al for the

interatomic potential is inaccurate at the long range.

2
Potential Cutoff Energy [mJ/m ]

This work 8.5155 A 65.3
12.0878 A 23.3
14.4194 A -22.0

>14.4194 A negative

12
Born-Mayer 176 atoms 0.007

4000 atoms 0.007

12
Morse 176 atoms 30.8

200 atoms 17.9
4000 atoms 0.422

76
Exp. -70

Table 7-1: Comparison of Stacking Fault
Energy Calculations ".

7.3 Large Cluster Configurations and Energies

For consistency, calculations of large vacancy

cluster configurations and energies were performed using

the same potential radius 8.5155 A and Duesbury factor

0.25a as for small clusters. A vacancy "platelet" was

created in the perfect lattice by removing the desired

.. .-.. .

-*~ h - -* * ... **.'-.. . . .
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number of adjacent atoms from a (111) plane. The system j
was then relaxed to the minimum energy configuration,

which took from 20 to 100 iterations.

Various numbers of vacancies were removed from a

(111) plane in the shapes shown in Figure 7-2. The number

of vacancies in the hexagonal loop in a (111) plane are

given by 3n(n+l) + 1, where n is an integer. For n = 0 .2 ..

one gets the trivial case of a single vacancy; n = 1 gives
3

a platelet with seven vacancies. Since Lam et al has

found that the lowest energy configuration of a nine

vacancy cluster is not a loop, larger sizes were

investigated. The two smallest hexagons formed by ten or

more vacancies have 19 and 37 vacancies. The triangular

shapes are given by n(n+l)/2; sizes of 10, 15, 21, 28 were

calculated. The number of vacancies in rhomboids can by

specified by m x n, where m and n are integers. Rhomboids

of sizes 4x4, 4x5 and 5x5 were simulated. The energies of

three irregular shapes were calculated: a 19 vacancy

hexagon with a side removed to give a 16 vacancy cluster;

a 21 vacancy triangle with two corners removed to form a

19 vacancy cluster; and a 14 vacancy cluster formed by

removing the acute corners of a 16 vacancy rhomboid.

The first goal of the calculations was to vacancy

platelet with the fewest vacancies which would collapse.

The criterion for collapse is that atoms above and below

the loop move to almost first nearest-neighbor distance

* - -.. .. -*4 *.. .- .. . ...... _.-.
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Figure 7-2: Shapes of Vacancy Platelets Introduced
______ -into (111) Plane
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from each other, while remaining almost planar. Contrary
3

to the results of Lam et al, all the shapes that were

tested collapsed, including the 19 vacancy hexagon. The

displacement field above the 19 vacancy loop is shown in

Figure 7-2, which shows that atoms just above the center

of the loop are displaced by about half the distance

between (111) planes. The planes below the loop are not

shown but reflect the behavior above the loop, such that

the opposing atoms are at first-neighbor distances from

one another. The loop is a Frank loop since there is no

evidence of shear. The 37-vacancy loop qualitatively

collapsed in the same way.

The displacement field above the center of the 19 and

37 vacancy loops is plotted quantitatively in Figures 7-4
30

and 7-5. The plot is taken from Ohr and shows the

predictions of anisotropic elasticity theory for the

displacement fields. The periodic boundaries used in the

simulation force the displacement to zero midway between

images of the loops, although this zero can in principle

be extended to large radii using large simulation volumes.

In the 19 vacancy loop, the displacement field appears

have converged with increasing system size at short

distances above the loop. At z/R = 2.5, the displacement

field calculated in this work differs by at least 40

percent from anisotropic theory predictions. The 37

vacancy results are inconclusive here because the field

has not converged with a system size of N = 4000.
d 0

A.....

°. . . . . . ..o*
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Figure 7-4: Displacement in z-direction Above
19 Vacancy Loop

The lines indicate the predictions of
30

anisotropic elasticity by Ohr for various
metals. The symbols are the results of this work
for volumes containing the specified number of
atoms before vacancies were created. R is the
loop radius; b is the Burgers vector a[l11/3.
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Figure 7-5: Displacement in z-direction Above
37 Vacancy Loop

The lines indicate the predictions of
30

anisotropic elasticity by Ohr for various
metals. The symbols are the results of this work
for volumes containing the specified number of
atoms before the vacancies were created. R is the
loop radius; b is the Burgers vector a[lll]/3.
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The triangular vacancy platelets invariably formed

stacking-fault tetrahedra (SFT). Figure 7-5 shows three

adjacent (111) planes, including the plane from which the

vacancies were removed. The nearest neighbor atoms one

plane above the circle atoms after displacement are

connected to form triangles. The triangles which contain

the circled atoms are inverted in the region of the

removed atoms which indicates the stacking fault. The

displacement of the atoms after relaxation is shown more

clearly in Figure 7-6, which is a cross-section of an SFT

created by 21 vacancies. The stacking fault is indicated

by the S-labelled triangles; the stair-rod jog by the

J-labelled squares. Note that the atoms below the

original vacancies have displaced only slightly, whereas

the atoms above the vacancies have moved about 4/5 of the

distance between (111) planes. In this view the atoms

which were displaced the most form a triangle enclosed by

the S-triangles and J-squares, and the atoms to the left

and right of the triangle are only slightly displaced.

The collapsed rhomboids investigated in this work

resulted in asyretric displacement fields which can bd

thought of as two adjacent SFT which are inverted in

relation to one another. In Figure 7-8 we see a (110)

plane cross-section of a 25 vacancy rhombus. The dashed

line indicates the position of the original vacancies;

note that the direction of the collapse is opposite on
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Figure 7-6: (111) Planes at the Face of an SFT

Three planes at the face of a 28-vacancy SFT
are shown. The squares are the atoms in the plane
from which the vacancies were removed; the circles
and triangles are on the planes below and above,
respectively.
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Figure 7-7: Cross-Section of 21-Vacancy SFT

The position of the cross-section is shown in
the caption. The solid lines connect nearest
neighbor atoms after relaxation; the dashed lines
show the unrelaxed positions where it
significantly differs from the relaxed
configuration. The S-triangles and J-squares
indicated the stacking fault and stair-rod jog,
respectively.

.
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either side. This displacement can be explained by noting

that the 25 vacancy rhombus can be constructed from two 15

vacancy triangles (one five vacancy edge of the triangle

is counted twice). If these triangles were separated but

had the same orientations as in the rhombus, they would

form two SFT with opposite orientations. The SFT are then

merged into the rhombus, but at the intersecting edge an

intermediate displacement field is formed. In Figure 7-9

three adjacent (112) planes are shown. Notice this

displacement field is qualitatively identical to the field

around a similar cross-section in the 19 vacancy hexagonal

loop in Figure 7-2. This is not unsurprising when it is

noted that the 25 vacancy rhombus can be formed from a 19

vacancy hexagon if three vacancies are added to each of .9.

two opposite edges of the hexagon. The atoms in rhombus,

however, experience a shear which is not present in the

hexagon. In Figure 7-10 three adjacent (111) planes

including the plane in which the vacancies were created

are shown. The dashed triangles are drawn between the

atoms which experience the large displacement on either

side of the rhombus as shown in Figure 7-8. The atoms

near the acute corners of the rhombus are displaced in a

similar manner as the atoms on the face of the SFT shown

in Figure 7-5, but there is evidence of shear in the

rhombus. In the center of the rhombus where no triangles

are drawn, the atoms are displaced to such a great extent
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that they line up and the adjacent planes do not form a

stacking fault, but are in intermediate positions and are

almost unfaulted. Hence, although the rhombus can be

considered as the the combination of two SFT or as a

modified hexagon, we see that the final structure is

different than the structure of the either a hexagonal

loop or an SFT.

The binding energies of the clusters investigated in

this work are given in Table 7-2 and plotted in Figure

7-11. Since these large clusters create extensive

displacement fields, it was necessary to use large systems

to achieve or at least indicate whether or not the

calculated binding energies have converged with respect to

the size of the system. The polygonal symbols indicate

the binding energies in an 864 atom volume; results for

larger systems are shown by an 'x' above the the polygons.

It is evident from Figure 7-11 that the SFT are the most

stable over all the cluster sizes and configurations

tested. The 19-vacancy "imperfect" SFT, formed from a

21-vacancy triangle with two corners missing, has a

binding energy which is about 2 ev greater than the

binding energy of the "perfect" 19-vacancy hexagonal loop.

The rhomboids are also more stable than the hexagonal

loops, but less stable than the SFT.

. . .. o- -
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Figure 7-8: (110) Cross-Section of Rhombus

or

Ilk
........A ------ ---- --- ---- ---- ---

..........

A5

full



''-4

-185-

Figure 7-9: (112) Cross-Section of Rhombus
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Figure 7-10: (111) Planes above and below Rhombus
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Binding Energy [eV]
Cluster System Of Per

Shape Size Size Cluster Vacancy

Hexagon
16 864 5.79 0.36
19 864 6.81 0.36
19 1372 7.17 0.38
19 2048 7.41 0.39
19 4000 7.69 0.40
37 864 18.51 0.50
37 2048 20.53 0.56
37 4000 21.44 0.58

SFT
10 864 3.68 0.37
15 864 7.27 0.49
19 864 9.34 0.49
21 864 11.86 0.57
21 2048 12.43 0.59
28 864 17.48 0.62
28 2048 18.39 0.66
28 4000 18.83 0.67

Rhomboid
14 864 4.41 0.35p16 864 6.90 0.43
20 864 9.54 0.48
20 2048 10.18 0.51
20 4000 10.48 0.52
25 864 13.46 0.54
25 2048 14.23 0.57
25 4000 14.63 0.59

Table 7-2: Binding Energies of Large Clusters
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Figure 7-11: Binding Energies of Large Clusters
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7.4 Discussion O)Z

The general results of the large cluster calculations

in this work follow the results of previous calculations
76, 77

on large clusters in copper It is found that

platelets collapse at relatively small sizes, starting

with as few as 10 to 15 vacancies. The triangular vacancy ,'-"

platelets form stacking fault tetrahedra (note that the

stable six vacancy cluster for copper found by Lam is a
3

small stacking fault tetrahedron ).

It is well known that elasticity theory breaks down

near a dislocation and a considerable amount of simulation
12

work has gone into the study of the core region This -

is probably the reason for the discrepancy in the results

in Figures 7-4 and 7-5. Note in Figure 7-4 that the

difference between the simulation results and elasticity

theory is fairly large when compared differences in the

elasticity theory curves for different metals. Elasticity

theory depends only on the elastic constants of a

material, and the elastic constants calculated using

Dagens' potential correspond very well to the experimental
15

values for copper . Because of this we would expect the

correspondence between the the copper results calculated

from the simulation and from elasticity theory to be

fairly close in Figure 7-5, if the elasticity theory were

accurate in this region. This is especially important

. .. ... ..
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since anisotropic elasticity theory is used to interpret
9, 11

X-ray diffuse scattering data •

Although the displacement fields around large loops

have been previously calculated for copper using atomistic76, 77 .

simulation with empirical potentials , this is the

first calculation of the binding energies of these
79

clusters. Bacon and Crocker used isotropic elastictity

to calculate the energies of symmetrical polygonal loops

and found a circular loop to be the most stable, but did

not account for the dislocation core. The same results _

were found when the theory was applied to nonregular .
80 81 -

polygons . Brown used a two-dimensional analysis of

straight dislocation line and applied it to calculating

the shape of loops, and concluded that the variation of

core energy with orientation would have to be accounted

for to find that hexagonal loops were lower in e-nergy than

circular loops. The first application of anisotropic
82

elasticity theory to fcc loops was made by Bacon et al

although only rhombus-shaped loops were investigated.
83

Gaboriaud and Grilhe calculated the relative stability

of triangular and hexagonal loops and SFT; it was found

that SFT were more stable than hexagonal loops of about

4400 vacancies or less (this corresponds to an SFT with an

240 A edge). These calculations accounted for the

disassociation of the partial Frank dislocation around the

defect. The results in this work agree with the overall

i[<.
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83

conclusions of Gaboriaud and Grilhe because it was found

that the SFT were the most energetically stable large

clusters.

Comparison of this work with experimental evidence is
8

less conclusive. As Kiritani points out , the relative

binding energy of clusters is not the the only factor

which determines whether or not a cluster will be formed.

Unless only one type of large cluster was seen under all

conditions, it would be difficult to determine the most

energetically stable cluster from experimental evidence.

In the case of copper, SFT and hexagonal loops have both
8, 84

been observed . The sizes of the collapsed loops also

agree with X-ray diffraction studies in which vacancy
9

clusters as small as about 10 A in diameter are found

although whether the cluster was a loop or SFT could not

be determined.

The general conclusion of this work is that loops and

SFT can form in copper from small vacancy clusters with as

few as ten vacancies. It is interesting to note that the

two previous simulations of these large clusters in copper

yielded essentially the same conclusions, even though
76, 77

different copper potentials were used . This is one

of the few cases where all the potentials for the same

metal have given similar results in molecular statics

simulations. It is found that there are some

• 5."
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discrepancies between the results of this work and

elasticity theory, and it is concluded that the latter is "-

in error for clusters of this size. This is particularly30

important since the results of Ohr are used to interpret
9, 11

diffuse X-ray scattering observations

jjii~., . * *
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Chapter 8

Silver Properties

8.1 Introduction

In addition to the copper potential used in the

earlier Chapters of this work, Dagens also developed
13, 14, 15

potentials for the noble metals silver and gold

Similar to the copper potential, excellent correspondence

is found between calculated and experimental values of
15  17

elastic constants and the phonon spectra for silver.
1, 3

Lam et al calculated the formation energies of single

vacancies and interstitials, binding energies of some

interstitial and vacancy clusters, and the migration
1, 3

energy of single and divacancies in silver. Lam et al

calculated the migration energy the single vacancy to be

0.57 eV, which within twelve percent of the experimental
4

result of 0.65 eV . A large discrepancy was found in

divacancy migration energies, however, because the

calculated and experimental values of the divacancy

migration energy are 0.19 eV and 0.57 eV, respectively.

A review of the annealing literature which supports

the experimental value of the divacancy migration energy,

however, indicates that it is possible to question the

. °
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assignment. The divacancy values were originally reported -'

in two separate annealing studies of quenched silver in
85, 861962 . The primary finding of both investigations

was that an annealing stage exists at -250K which anneals

out about sixty percent of the residual resistivity caused

by the defects and which has an effective activation

energy of 0.57 ev. At the time it was believed that

monovacancies in silver had a migration energy of about

0.82 ev, so the 0.57 ev value was assigned to divacancies.

(The single vacancy migration energy was later found to be , --',

87, 88
about 0.65 ev ) The second major finding was that

the annealing followed second order kinetics throughout

sixty to ninety percent of the annealing stage at 250

K. Second order kinetics imply that two of the same type

of defect are involved in a reaction. It was suggested

that divacancies were combining to form tetravacancies
86

through most of the annealing in the stage . Following

the second order kinetics was a faster annealing process,

i.e., one that approached first order, which could be

explained by the divacancies going to clusters which had

already been formed. The general picture which emerged

was that the annealing was dominated by divacancies

combining with each other during most of the annealing

stage, followed by divacancies finally combining with

clusters. Tetravacancies are still present to some degree
86

at the end of the annealing stage

j"-,"
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Because of the resistivity remaining at the end of

the stage, it is possible that these conclusions may be

contradictory. At the end of the annealing stage at 250K,

approximately forty percent of the original residual

resistivity remains. If most of original defects are now

members of tetravacancies, the resistivity per vacancy of

a tetravacancy would be about forty percent of that of a

single vacancy. It is generally assumed, however, that

the resistivity per vacancy is independent of the cluster

size at least for small clusters which has been verified
71, 89

in experiments on some metals . Another possible

explanation is that at the end of the stage the defects

are members of larger clusters which are more likely to

have a smaller resistivity per vacancy. At the onset of

first order kinetics when divacancies start combining with

clusters instead of other divacancies, however, the

vacancies must be partitioned between divacancies and

tetravacancies since larger clusters are just starting to

form. At this point at least thirty percent of the

original resistivity has already annealed out; lepending

on the original vacancy conditions, the tetravacancies

once again must have significantly less resistivity

contribution per vacancy than single and divacancies do.

Another interesting result reported by Antesburger et

al also leads one to suspect that the accepted assignments
87

may not be complete . Antesburger et al performed
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annealing studies of pure and doped electron-irradiated Y-

silver. The purpose of doping is to create large numbers

of vacancy sinks so that the vacancies will interact

mainly at the sinks instead of with one another. This

process prevents mobile vacancy clusters from forming

because the vacancies are annihilated at sinks and

interstitial clusters or absorbed by large immobile

vacancy clusters before they can encounter another

vacancy. Since electron-irradiation experiments usually

only produce single vacancies and interstitials, vacancy

clusters should not influence the calculated activation

energies. It was found that the activation energy for the

annealing of the doped silver was constant throughout the

annealing stage, as expected. In undoped silver, however,

the results were difficult to explain. At high initial

defect densities, behavior similar to the doped silver was

found, i.e., the activation energy was constant. At low

initial defect densities, the activation energy was found

to vary from a maximum of 0.65 ev to a minimum of about

0.57 ev. Since divacancies are created by a second-order

reaction (the cimbination of two single vacancies), this

is surprising because one would expect divacancy effects

to increase with defect density.

The general procedure in annealing studies is to

attempt to explain annealing behavior using the simplest

possible model. If a single defect (i.e., single vacancy)

I
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cannot explain the results, divacancies and occasionally

trivacancies are introduced. This was found to be ..E

necessary in gold and aluminum. Often there is support

from other types of experiments such as self-diffusion and L

positron annihilation investigations which provide

additional information, but even in these cases

interpretations can be incorrect. Gold, for example, is

the most extensively investigated metal using annealing

studies with investigations dating from the 1950's. The

conclusions of an extensive fitting study performed on the
90 4

available data in 1978 were generally accepted , and yet
91, 68

later found to be incorrect

Because of these questions, we felt it would be

interesting to investigate the silver potential of
15

Dagens further. This involves the identification of the

migration behavior of the tri- and tetravacancies and

primarily the calculation of migration energies. Compared

the copper work in Chapters 5, 6, and 7, fewer atoms were

used in the silver study for both the small defect and

thermodynamic property calculations, and no large defect

calculations were performed. Nevertheless, these results

provide important groundwork for future work and allow us k.-

to make tentative conclusions concerning the silver

potential.

• • .-. %
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8.2 Thermodynamic Properties

As discussed in Section 5.2, it is not possible to

calculate the pressure during the simulation since we do

not know the structure-independent part of the potential.

Instead of calculating silver properties at three

different volumes as was done with copper, however, a

reference pressure P was calculated and used as a
ref

correction to the simulation pressure at all volumes.

Since the silver interatomic potential was derived for the

lattice constant a = 4.087A, the reference pressure was

calculated at T = 298K, since real silver at this

temperature and ambient pressure has the desired lattice

constant, was found to be P = 20.8 GPa.
ref

The results of the thermodynamic calculations are (

plotted in Figure 8-1. Thes calculations were done with

N= 108 atoms and a cutoff radius of 1.5a for the

potential. In general the data is well-behaved except

near the melting point, which is to be expected. Table

8-1 contains calculated thermodynamic properties and

experimental values.

The results of bulk modulus calculations using

molecular statics are shown in Figure 8-2, and the

calculated bulk modulus is given in Table 8-1. The bulk

modulus was calculated at T = OK by setting up the system

with a given volume and atoms at the perfect lattice sites

* °*.. . .. .. * * * % _.. . . . .. _"
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Figure 8-1: Silver Thermodynamic Properties
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92 ... '

92
This Work Exp

c [kJ/kg-K] 251. 235@298K, 269@820K

T [K] -1300 1235.

m

-4H [kJ/Kgl 107. 104.2

m

AV 0.014 0.05f.
10

B [10 Pal 10.1 10.3

-6 -1

OL,[i0 K ] 10.7 19.5

Table 8-1: Comparison of Silver Thermodynamic Properties

and then calculating the pressure. These calculations

were done with three different systems which contained a

specified number of atoms and potential cutoff radius.

The discontinuity shown in the (N = 256, r = 1.866a) case
C

is caused by the atoms crossing the cutoff radius at that

particular volume.

8.3 Small Cluster Migration

In the small cluster calculations, and cutoff radius

of 1.5a was used with a system of 108 atoms. Also, the
45

Duesbury factor was not employed in the silver

calculations. Because of this we first wanted to compare
1, 3

the published values of defect results of Lam et al to

%,
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Figure 8-2: Silver Bulk Modulus Calculations
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ours to insure that there was reasonable agreement. The

migration and binding energies of the most stable

configurations of some of the vacancy clusters are shown

in Table 8-2 for systems of 108 and 256 atoms (before the V

atoms were removed to create vacancies). Table 8-2

indicates that there is fairly good correspondence between

the values. This is not unexpected since the defect

properties are mainly determined by the short range

portion of the potential. We also confirmed that the

configurations listed were the most stable.

This Work
a

Energy Lam et &I N'=108 N'=256
m
E 0.54 0.55
IV
b
E 0.04 0.05
2V
m
E 0.19 0.22
2V
b

E 0.47 0.39 0.44
3V
b
E 0.86 0.82
4V

Table 8-2: Comparison of Silver Results

1, 3

a - Lam et al

To determine mechanisms of migration and breakup of

clusters, it is necessary to }know the binding energies of

the possible cluster configurations. In Figure 8-3 five

• [I
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trivacancy configurations are shown. Configuration 3E is

not a trivacancy in the sense that all the vacancies are

not connected. The binding energies of the configurations

are given in Table 8-3. Configuration 3A is definitely S

the most stable having a binding energy of about 0.25 ev

larger than the others. Configuration 3C, which from a

migration standpoint is between B and D, is less stable

than 3B and 3D. Even though configuration 3E is not a

trivacancy by our definition, it's binding energy is

fairly close to that of 3C.

The migration energies between some of the

configurations are given in Table 8-4. The trivacancy

migrates by transforming from configuration 3A to 3B and

then back to 3A at a different site. As shown in Figure

8-4, the transformation is accomplished by the movement of

two atoms--the central atom of the 3A configuration and

one adjacent atom. The migration energy for the motion is

0.47 ev. Defining a reaction coordinate _ such that it is

1.0 near in configuration 3A and -1.0 when near 3B, we can

plot the energy barrier as shown in the left half of

Figure 8-5.

The breakup of the trivacancy can occur by a

transformation from configuration 3B to 3E, as shown in

Figure 8-4. The reaction coordinate is defined here to be

1.0 at 3B and -1.0 at 3E. As shown in Figure 8-5, the

barrier height between 3B and 3E is about 0.28 ev above

*%.*%.-..--.
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Figure 8-3: Silver Trivacancy Configurations
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Cluster Binding Energy (ev) '"
3A 0.437
3B 0.201
3C 0.087
3D 0.146
3E 0.047
4A 0.815
4B 0.579 W.
4C 0.514
4D 0.426

Table 8-3: Binding Energies of
Siv-er Vacancy Clusters

Migration Energy (ev)
Transition N'=108 N'=256

3A->3B 0.47 0.47
3B->3E 0.28
4A->4A' 0.38
4A->4C 0.48
4A->4D 0.52

Table 8-4: Silver Migration Energies

.

° a "

'* - . *. -. . * - . * .* *. . . . *. * * ... . . . . .

*
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Figure 8-4 " Silver Migration Mechanisms
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Figure 8-5: Silver Trivacancy migration Energy Barrier
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the energy in configuration 3B. We note that the energy

at configuration 3E is still somewhat greater than that of

an isolated divacancy, so the single and divacancy are .-

still attracted to one another at this point.

The situation for the tetravacancy is more

complicated than that for the trivacancy. We investigated

the four configurations shown in Figure 8-6. As shown in

Table 8-3, configuration 4A is the lowest energy
3

configuration, as reported by Lam et al . The other

configurations have much lower binding energies. Note

that 4D is not really a tetravacancy since all the

vacancies are not connected. Some of the migration

mechanisms for the tetravacancy are shown in Figure 8-4,

and the migration energies are given in Table 8-4. It is

interesting to note that the stable configuration 4A can

migrate without passing through a higher energy metastable

configuration.

8.4 Discussion

The thermodynamics properties that were calculated in

the simulation agree are in good agreement with the

experimental results. The two quantities that

substantially differ are the thermal linear expansion

coefficient 4 and the volume change on freezing AVf A
f

possible explanation for the large errors in these V

quantities is that the reference pressure P , which
ref

.................... .
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Figure 8-6: Tetravacancy Configurations .
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accounted for the cohesive energy of the electrons, is not

realistically a constant over the wide temperature range

(and phase change) we simulated. Errors in P would
ref

significantly affect CL and &V because they depend of

volume changes.

The defect calculations in this work indicate

interesting defect behavior. The most interesting result

is that the tetravacancy is apparently more mobile than

the trivacancy. This is caused by the fact that the

tetravacancy can migrate without passing through a higher

energy metastable configuration, while the trivacancy

passes through 3B during migration.

By combining the results of this work with the1, 3
previous studies by Lam et al , we can begin to

understand the annealing behavior of the computer silver

we are simulating. In Table 8-5, the basic defect

properties affecting annealing are shown. In cases where

Lam et al had previously calculated values, we use their
dis

numbers which are more accurate. The column E is the

disassociation or breakup energy of the cluster. This

value is the difference in binding energies before and

after the breakup, added to the migration energy of the

most mobile constituent.

We can infer some conclusions from Table 8-5. First

of all, the divacancies are so mobile compared to the

other clusters that they will be annihilated at sinks or

° - •

V.. *.*. ... *..*, °K.. . .. . . .... . . . . '
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b m di
Defect E (ev) E (ev) E (ev)

V - 0.55 -

V 0.04 0.19 0.59
2

V 0.47 0.47 0.62
3

V 0.86 0.38 0.86
4

Table 8-5: Defect Annealing Values in Silver

1, 3
(* from Lam et al )

combine with other vacancies almost instantaneously upon

formation. This can shown by estimating the jump rate J
2

of the divacancies. The jump rate is given by

m
J = F exp(-E /kT)
2 2V

13 -1
where F is a frequency factor. For F = 10 sec and T =

8 -1
200K, we have J 1 10 sec . With a jump rate this large

2
the divacancies will encounter sinks or other defects very

quickly. Because of this, the divacancy concentration

will be very low and their direct effect on the calculated

activation energy will be small. Even though the

divacancy binding energy is very small, they will never

disassociate before being annihilated because

I-,

**.~** ~ ... . . . . . *..%-.
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disassociation requires single vacancy migration. The

indirect effect of the mobile divacancy is that the

trivacancy will breakup or disassociate before interacting

with other defects because its disassociation energy is

low.

The consequence of low divacancy and trivacancy

concentrations is that tetravacancy concentrations will

also be small because the divacancies and trivacancies are

required in reactions that create tetravacancies. Under

these circumstances second-order reactions (divacancy-

divacancy, trivacancy-trivacancy, etc.) between clusters

will be minimal. At the beginnning of annealing, some

pentavacancies will eventually form and subsequently most

of the annealing will be the absorption of single and

divacancies by these clusters. We conclude that this

annealing scheme does not explain the experimental results

on the annealing of quenched silver any better than the

previous model, since the reaction under these

circumstances will be first order, i.e., single vacancies

interacting with sinks and the newly formed vacancy

clusters.

The major difficulty with the annealing model

suggested by the computer simulation results is the very

high mobility of the divacancies. The problem is not that

the divacancy concentration is so low, but that the

trivacancies disassociate so easily. If trivacancies were

*1,~~.1
" ' ~ ~ * * *. . . 5- * %" .* S . S
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relatively stable during annealing, they would be able to

combine with each other in a second-order reaction

.J.

resulting in the formation for hexavacancies. The *. ,

problems we pointed out in the annealing model suggested*'\'
86, 85

by the quenching studies were based on

tetravacancies having a much smaller resistitivity per

vacancy than single and divacancies. It is likely that -

hexavacancies have a smaller resistivity per vacancy than

tetravacancies, and hence it would somewhat more

acceptable if the second order reaction involved tri-

instead of divacancies.

The results of these silver calculations support the

general conclusions of the copper work. Notably, the

silver potential reproduces the thermodynamic properties

of real silver better than the copper potential did for

copper, and even does well in estimating the melting point

(although the density at the melting point is incorrect).

The low temperature results are very good, as was found

with the copper potential. As before, we find that the

migration behavior of the silver tri- and tetravacancies

is not easily predictable. In silver it is found that the

divacancy is more mobile than single vacancies and tri-

and tetravacancies, but the tetravacancies are more mobile

.. .-
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Chapter 9

Conclusions

The purpose of this thesis is to apply atomistic

simulation techniques to the study of defect clusters in

pure metals. Specifically, the method of molecular

statics has been used to investigate vacancy clusters

using an interatomic potential derived from first

principles for copper. The migration energies of small

clusters (four vacancies or less) have been determined by

considering all possible paths and associated barriers for

moving the lowest energy configuration from one location

to another. The stable configurations of large clusters

of 10-40 vacancies have been studied by forming a vacancy

platelet of a given size in a (ill) close packed plane,

allowing the entire system to relax to the lowest energy

configuration, examining the resulting displacement field,

and checking for the collapse of adjacent atomic layers.

In order to examine the applicability of Dagens'

potential for calculating other properties of copper, the

method of molecular dynamics has been used to study bulk

properties over a temperature range up to melting. A

parallel calculation was also carried out using and

empirical potential fitted to the bulk modulus, the

I:
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lattice constant at OK, and point defect properties.

These results provide additional evidence for the

usefulness of these potentials.

The major findings of the vacancy migration energy

study are the migration energies for tri- and

tetravacancies, namely, 0.56 eV and 0.38 eV. These are

appreciably lower than the single vacancy migration energy

of -0.74 eV, which is reasonably well established from
4

annealing experiments . The divacancy energy has not been

experimentally measured, although the divacancy is
5

believed to be more mobile than the single vacancy

Essentially nothing definitive can said about the tri- and

tetravacancies in copper from experiment. Molecular

statics calculations based on Dagens' potential give a

value of 0.82 eV for the single vacancy migration energy

and 0.55 eV for the divacancy. The present results

predict that trivacancies should be just as mobile as

divacancies, and the tetravacancies even more mobile.

This prediction needs to be verified. An attempt has been

made to model the existing annealing experiments for

copper by using the binding and migration energies of

small vacancy clusters calculated using Dagens' potential.

It is found that the effective activation energy is still

close to the single vacancy migration energy for a variety

of sink and initial single vacancy concentrations.

In this thesis, a study was also made of tri- and
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tetravacancy migration in silver, for which a first

principles potential is also available. It is found that

the tri- and tetravacancy are also more mobile than the

single vacancy, but in this case they are both less mobile

than the divacancy. Combining the copper and silver

results, it appears that di-, tri-, and tetravacancy

clusters are generally more mobile than the single

vacancy, but that the precise relative order can vary from

case to case.

The major findings of the study of stability of large

vacancy clusters are observations of collapse of platelets

with as few as ten vacancies, collapse hexagonal platelets

into Frank loops, and the collapse of triangular platelets

into stacking fault tetrahedra (SFT). Both Frank loops

and SFT have been observed in copper by electron
8, 84

microscopy , and the from X-ray diffuse scattering the

smallest Frank loop was found to be about 10 A in
9

diameter , approximately the size of the 19-vacancy

displacement loop. From the simulation results, the

displacement field above and below the Frank loop has been

calculated and compared with linear anisotropic elasticity
30

calculations ; close to the loop, the two results differ

which in not surprising in view of the fact that linear

elasticity theory is not expected to be valid at short

distances. This effect could be important since the

elasticity results are used in interpreting X-ray diffuse

*4 .
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9, 11

scattering data . The binding energies of the Frank

loops and SFT have been calculated and the results

indicate that SFT are the most stable large vacancy

cluster configuration.

The bulk property study shows that both Dagens' and

the empirical potentials given reasonable results at low

temperatures. This is perhaps to be expected in the case p1

of Dagens' potential since it is already known that the

elastic constants and phonon spectra are calculated
14

correctly . As elevated temperatures both potentials are

less satisfactory. Although Dagens' potential is better

theoretically justified, it is incomplete without the

structure-independent term for the purposes of

thermodynamic calculations.

This work has shown that it is possible to simulate

relatively large vacancy defect clusters using atomistic

simulation methods. It would be interesting to repeat

these calculations for a different interatomic potential

which has a higher stacking fault energy to determine if V

the large defects are significantly different, perhaps

forming unfaulted loops instead of faulted loops and SFT.

Furthermore, the dynamical behavior of the large clusters

can be investigated using molecular dynamics to observe

the formation of stacking fault tetrahedra and unfaulting

of Frank loops. The migration energy calculations can be

- .* * * * - *i
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extended by performing more realistic annealing modeling
93

using the correlated random walk method , which may allow

less ambiguous comparisons to be made with experiment.

r.'d
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